
RNA-Seq Module 10 Alignment Free Expression Estimation (Kallisto) Kelsy Cotto, Malachi Griffith, Chris Miller, Peter Ronning

Module 10 rnabio.org

What is a k-mer?

• A fixed sized (K) sequence

A string of length N contains
 N-K+1 k-mers

1-mer

A C G 2-mer

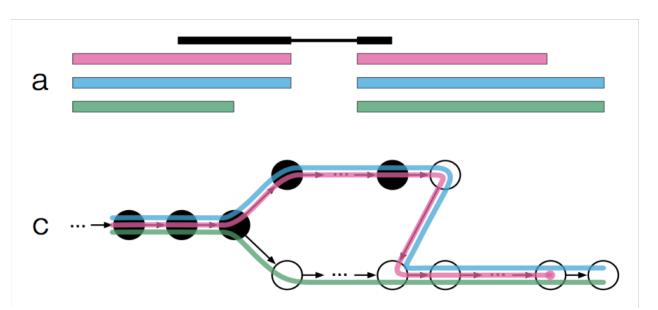
AA	AC	AG	АТ		
CA	СС	CG	СТ		
GA	GC	GG	GT		
ТА	тс	TG	TT		

<u>ATTCGAC</u>AGTAGCCATGACTGG

 One can build K-mer index to represent a string

7-mer	iD	N
ATTCGAC	1	1
TTCGACA	2	1
TCGACAG	3	1

Sailfish: Alignment-free Isoform Quantification from RNA-seq Reads using Lightweight Algorithms Rob Patro, Stephen M. Mount, and Carl Kingsford. *Manuscript Submitted* (2013) http://www.cs.cmu.edu/~ckingsf/class/02714-f13/Lec05-sailfish.pdf


https://www.slideshare.net/duruofei/cmsc702-project-final-presentation

Alignment free approaches for transcript abundance

- 1. Obtain reference transcript sequences
 - e.g. Ensembl, Refseq, or GENCODE)
- 2. Build a k-mer index of all of the k-mers in each transcript sequence
 - Store each k-mer and its position within the transcript. "hashing"

Alignment free approaches for transcript abundance

- 3. Count number of times each k-mer occurs within each RNAseq read
 - Model relationship between RNA-seq read k-mers and the transcript k-mer index.
 - What transcript is the most likely source for each read?
 - Called "pseudoalignment", "quasi-mapping", etc.

Bray, 2016 doi:10.1038/nbt.3519

https://tinyheero.github.io/2015/09/02/pseud oalignments-kallisto.html

- 4. Handle sequencing errors, isoforms, ambiguity, and determine abundance estimates
 - Transcriptome de Bruijn graphs, likelihood function, expectation maximization, etc.

Advantages/disadvantages of alignment free approaches

- Advantages
 - Very fast and efficient
 - Similar accuracy to alignment based approach but with much, much shorter run time.
 - Do not need a reference genome, only a reference transcriptome
- Disadvantages
 - You don't get a proper BAM file (though a pseudo-bam can be created)
 - Information in reads with sequence errors may be ignored
 - Limited potential for transcript discovery, variant calling, fusion detection, etc.

Common alignment free tools

Sailfish

- "Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms." 2014
- https://www.ncbi.nlm.nih.gov/pubmed/24752080

RNA-Skim

- "RNA-Skim: a rapid method for RNA-Seq quantification at transcript level." 2014
- https://www.ncbi.nlm.nih.gov/pubmed/24931995

Kallisto

- "Near-optimal probabilistic RNA-seq quantification." 2016
- https://www.ncbi.nlm.nih.gov/pubmed/27043002

Salmon

- "Salmon provides fast and bias-aware quantification of transcript expression." 2017
- https://www.ncbi.nlm.nih.gov/pubmed/28263959

Which is best?

- Somewhat controversial ...
- https://liorpachter.wordpress.com/2017/08/02/how-not-to-perform-a-differential-expression-analysis-or-science/

- Various sources suggest that Salmon, Kallisto, and Sailfish results are quite comparable
- Usability, documentation, and supporting downstream tools could be used to decide