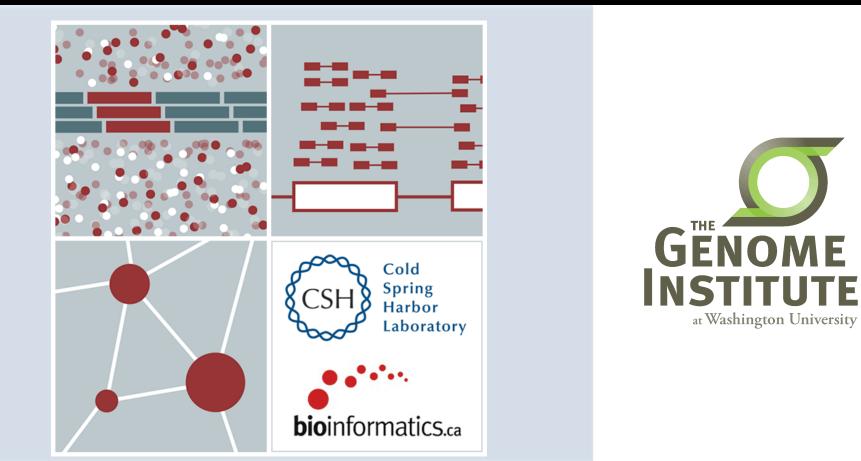

Canadian Bioinformatics Workshops

www.bioinformatics.ca

Creative Commons

This page is available in the following languages:

Afrikaans български Català Dansk Deutsch Ελληνικά English English (CA) English (GB) English (US) Esperanto Castellano Castellano (AR) Espeñol (CL) Castellano (CO) Espeñol (Ecuador) Castellano (MX) Castellano (PE) Euskara Suomeksi français français (CA) Galego עברת hrvatski Magyar Italiano 日本語 한국어 Macedonian Melayu Nederlands Norsk Sesotho sa Leboa polski Português română slovenski jezîk српски srpski (latinica) Sotho svenska 中文 雅語 (台灣) isiZulu



Learn how to distribute your work using this licence

RNA-Seq Module 2 Alignment and Visualization (lecture)

Malachi Griffith, Obi Griffith, Fouad Yousif Informatics for RNA-seq Analysis May 28-30, 2018

Learning objectives of the course

- Module 0: Introduction to Cloud Computing
- Module 1: Introduction to RNA Sequencing
- Module 2: Alignment and Visualization
- Module 3: Expression and Differential Expression
- Module 4: Alignment Free Expression Estimation
- Module 5: Isoform Discovery and Alternative Expression
- Tutorials
 - Provide a working example of an RNA-seq analysis pipeline
 - Run in a 'reasonable' amount of time with modest computer resources
 - Self contained, self explanatory, portable

Learning objectives of module 2

- RNA-seq alignment challenges and common questions
- Alignment strategies
- HISAT2
- Introduction to the BAM and BED formats
- Basic manipulation of BAMs
- Visualization of RNA-seq alignments in IGV
- Alignment QC Assessment
- BAM read counting and determination of variant allele expression status

RNA-seq alignment challenges

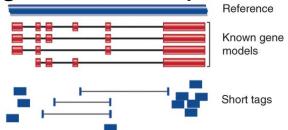
- Computational cost
 - 100's of millions of reads
- Introns!
 - Spliced vs. unspliced alignments
- Can I just align my data once using one approach and be done with it?

bioinformatics.ca

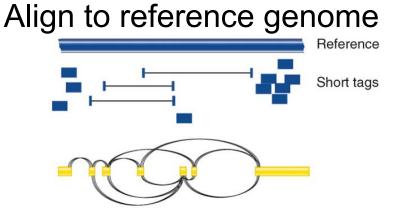
- Unfortunately probably not
- Is HISAT2 the only mapper to consider for RNA-seq data?
 - <u>http://www.biostars.org/p/60478/</u>

Three RNA-seq mapping strategies

De novo assembly



Assemble transcripts from overlapping tags

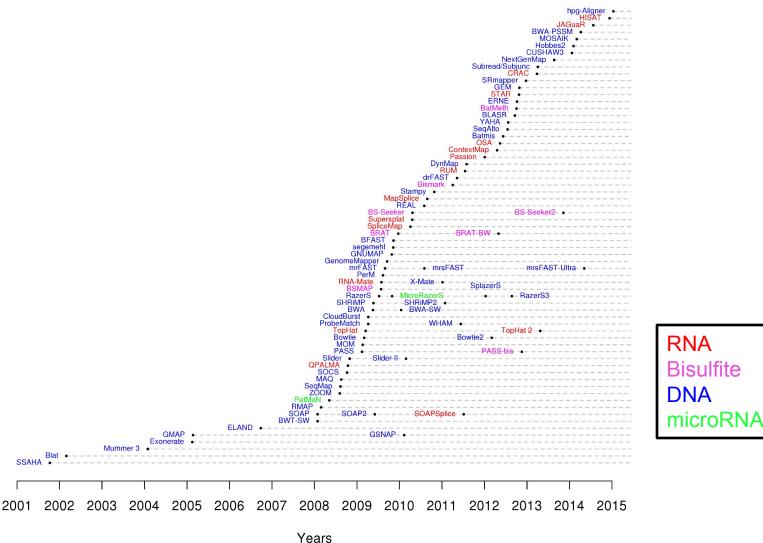


Optional: align to genome to get exon structure

Align to transcriptome

Use known and/or predicted gene models to examine individual features

Infer possible transcripts and abundance

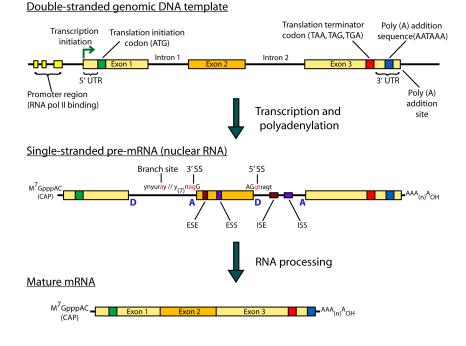

Diagrams from Cloonan & Grimmond, Nature Methods 2010

bioinformatics.ca

Which alignment strategy is best?

- De novo assembly
 - If a reference genome does not exist for the species being studied
 - If complex polymorphisms/mutations/haplotypes might be missed by comparing to the reference genome
- Align to transcriptome
 - If you have short reads (< 50bp)
- Align to reference genome
 - All other cases
- Each strategy involves different alignment/assembly tools

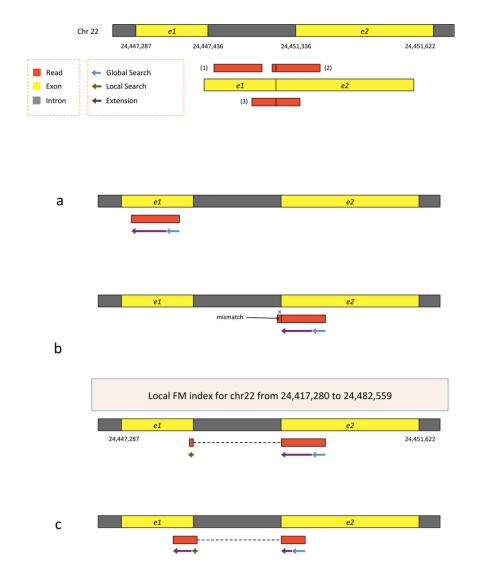
Which read aligner should I use?



http://wwwdev.ebi.ac.uk/fg/hts_mappers/

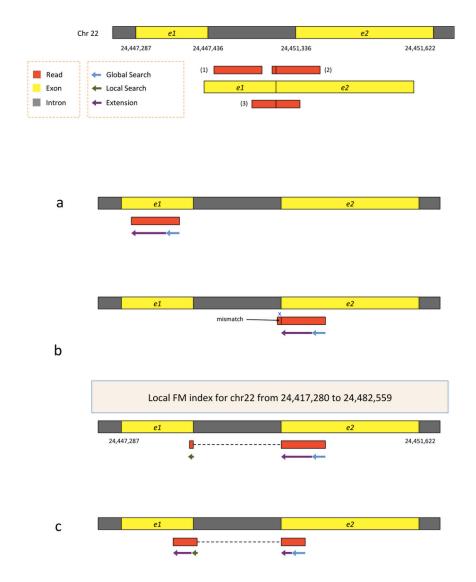
RNA sequencing and analysis

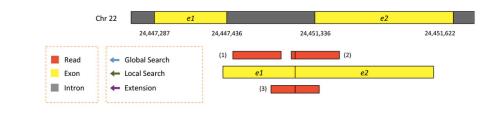
Should I use a splice-aware or unspliced mapper

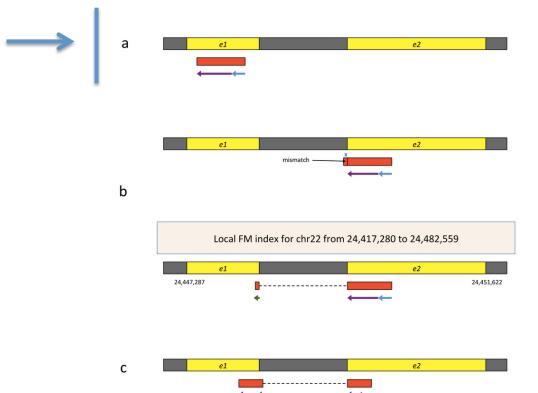

- RNA-seq reads may span large introns
- The fragments being sequenced in RNA-seq represent mRNA and therefore the introns are removed
- But we are usually aligning these reads back to the reference genome
- Unless your reads are short (<50bp) you should use a splice-aware aligner
 - HISAT2, STAR, MapSplice, etc.

bioinformatics.ca

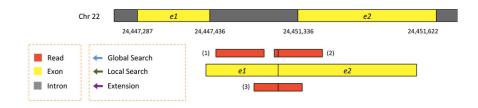
- HISAT is a 'splice-aware' RNA-seq read aligner
- Requires a reference genome
- Very fast
- Uses an indexing scheme based on the Burrows-Wheeler transform and the Ferragina-Manzini (FM) index
- Multiple types of indexes for alignment
 - a whole-genome FM index to anchor each alignment
 - numerous local FM indexes for very rapid extensions of these alignments.
 - Whole-genome indices with SNPs and known transcript structures accounted for

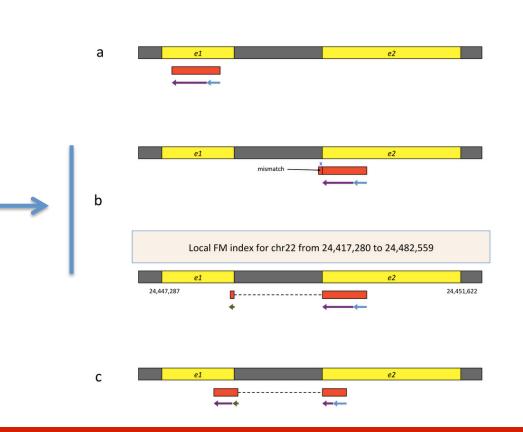

Kim et al. 2015. Nat Methods 12:357–360


bioinformatics.ca


- Uses hierarchical indexing algorithm and several adaptive strategies, based on the position of a read with respect to splice sites
- First tries to find candidate locations across the target genome from which the read may have originated by mapping part of each read using the global FM index, which in most cases identifies one or a small number of candidates.
- Then selects one of ~48,000 local indexes for each candidate and uses it to align the remainder of the read.
- For paired reads, each mate is separately aligned and the alignments of both mates are combined.
 - If a read fails to align, then the alignments of its mate are used as anchors to map the unaligned mate

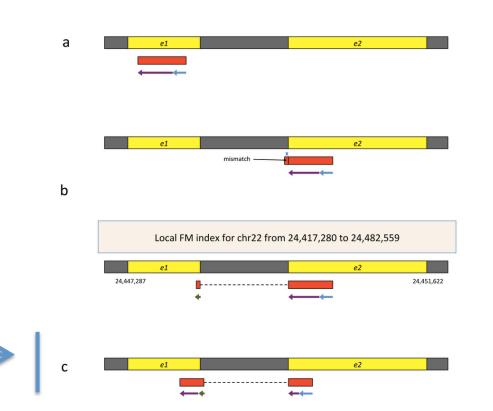
Kim et al. 2015. Nat Methods 12:357–360


bioinformatics.ca



- First align read with global index (slower)
- Once at least 28bp and exactly one location switch to extension mode against reference genome (faster)


RNA sequencing and analysis



- Again use global search until exactly one match of at least 28bp (slower)
- Extend as before until mismatch at 93bp (faster)
- Switch to local FM index to align remaining 8bp
 - Because the index covers only a small region, in this case we find just one match for the 8-bp segment.
- Check for compatibility and combine into single spliced alignment

bioinformatics.ca

- Again use global search until exactly one match of at least 28bp (slower)
- Extend as before until mismatch at 51bp (faster)
- Switch to local FM index to align first 8bp of remaining read
 - If too many matches increase prefix size
- Extend again
- Check for compatibility and combine into single spliced alignment

bioinformatics.ca

Should I allow 'multi-mapped' reads?

- Depends on the application
- In *DNA* analysis it is common to use a mapper to randomly select alignments from a series of equally good alignments
- In *RNA* analysis this is less common
 - Perhaps disallow multi-mapped reads if you are variant calling
 - Definitely should allow multi-mapped reads for expression analysis with Cufflinks (and StringTie?)
 - Definitely should allow multi-mapped reads for gene fusion discovery

What is the output of HISAT2?

- A SAM/BAM file
 - SAM stands for Sequence Alignment/Map format
 - BAM is the binary version of a SAM file
- Remember, compressed files require special handling compared to plain text files

bioinformatics.ca

• How can I convert BAM to SAM?

– <u>http://www.biostars.org/p/1701/</u>

Example of SAM/BAM file format

Example SAM/BAM header section (abbreviated)

mgriffit@linus270 -> samtools view -H /gscmnt/gc13001/info/model_data/2891632684/build136494552/alignments/136080019.bam | grep -P "SN\:22|HD|RG|PG" **GHD** VN:1.4 S0:coordinate @S0 SN:22 LN:51304566 UR:ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa.gz AS:GRCh37-lite M5:a718acaa6135fdca8357d5bfe9 4211dd SP:Homo sapiens @RG ID:2888721359 PL:illumina PU:D1BA4ACXX.3 LB:H_KA-452198-0817007-cDNA-3-lib1 PI:365 DS:paired end DT:2012-10-03T19:00:00-0500 SM:H KA-452198-0817007 CN:WUGSC @PG ID:2888721359 VN:2.0.8 CL:tophat -- library-type fr-secondstrand -- bowtie-version=2.1.0 @PG ID:MarkDuplicates PN:MarkDuplicates PP:2888721359 VN:1.85(exported) CL:net.sf.picard.sam.MarkDuplicates INPUT=[/gscmnt/gc13001/info/build_merged_alignments/merged_alignment-blad e10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300.bam] OUTPUT=/gscmnt/gc13001/info/build_merged_alignments/merged_alignment-blade10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300.bam] alker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300-post_dup.bam METRICS_FILE=/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-1543 4-136080019/staging-1iuJS/H_KA-452198-0817007-cDNA-3-lib1-2888360300.metrics REMOVE_DUPLICATES=false ASSUME_SORTED=true MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=9500 TMP_DIR=[/gscmnt/gc13001/info/build_merged_al ignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y] VALIDATION_STRINGENCY=SILENT MAX_RECORDS_IN_RAM=500000 PROGRAM_RECORD_ID=MarkDuplicates PROGRAM_GROUP_NAME=Mark DUPLICATES MAX_SEQUÊNCES_FOR_DISK_READ_ENDS_MAP=50000 SORTING_COLLECTION_SIZE_RATIO=0.25 READ_NAME_REGEX=[a-zA-Z0-9]+:[0-9]+):([0-9]+):([0-9]+):([0-9]+):(0-9]+):([0-QUIET=false COMPRESSION LEVEL=5 CREATE INDEX=false CREATE MD5 FILE=false mgriffit@linus270 ~>

Example SAM/BAM alignment section (only 10 alignments shown)

mgriffit@linus270 -> samtools view -f 3 -F 1804 /gscmnt/gc13001/info/model_data/2891632684/build13649	4552/aligaments/126000010 ham haad
HVI_57495 129147882:3:2114:15769:38646 99 1 11306 3 100M = 11508 302	4552/ dtgfmments/ 15060015/500015/500017/5000017/5000000000000
CCFFFFHHGHJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	CC:2:15 MD:2:5A94 PG:2:Markbublicates RG:2:2888721359 XG:1:0 NH:1:2 HI:1:0 NM:1:1 XM:1:
1 XN::0 X0::0 CP::122519765 A5::-5 X5:A:+ YT:Z:UU	
HWI-ST495 129147882:3:2114:15769:38646 147 1 11508 3 100M = 11306 -302	ACTCCTAAATATGGGATTCCTGGGTTTAAAAGTATAAAATAAAT
;5:CDCDCDECEFCD@9E=?7EEIIIIHCEGGIJJJJIIJJHF@?00IHHFFGG?*JJJIJGHGEIJJIJJJJJIHHCIEJJJHFHHGHFFEDFCCB	CC:Z:15 MD:Z:34A65 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
1 XN:i:0 X0:i:0 CP:i:102519563 AS:i:-6 XS:A:+ YT:Z:UU	
HWI-ST495 129147882:3:1210:1257:16203 163 1 11810 3 100M = 12055 345	CCTGCATGTAGTTTAAACGAGATTGCCAGCACCGGGTATCATCACCATTTTTCTTTTCGTTAACTTGCCGTCAGCCTTTTCTTTGACCTCTTCTTCTGC
CCFFFFHFHAFGGIIIJJJEEHGIGGGIJIJJGI?@EHIGIJDGHIHIGGIJJJJJJJJJJGHHHGHFFFCDDDDDDCDCCCCCA;>@>@AA@:AA>AA	CC:Z:15 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 X0:i:0 CP:i:102519261 AS:i:0 XS:A:- YT:Z:UU	
HWI-ST495_129147882:3:1210:1257:16203 83 1 12055 3 100M = 11810 -345	GAGCACTGGAGTGGAGTTTTCCTGTGGAGAGGAGCCATGCCTAGAGTGGGATGGGCCATTGTTCATCTTCTGGCCCCCTGTTGTCTGCATGTAACTTAATAC
CC>4C>DCCCACACDCC?BDCEE@ECFFFFHHHHHIJJJIIJJIIHHEHIIGJIJIJJIGHIIIJJJJJIIJJJJJIJJJJJJJJJJ	CC:Z:15 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 X0:i:0 CP:i:102519016 AS:i:0 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:2111:3117:78828 163 1 12634 3 100M = 12746 212	GCCCTTCCCCAGCATCAGGTCTCCAGAGCTGCAGAAGACGACGACGACGGCCGACTTGGATCACACTCTTGTGAGTGTCCCCAGTGTTGCACAGGTGAGAGAGA
@@FFFFFDHHHH9FHGIIFGAFDHEGII>GHIIIIIIIIIIIIIIIIIIHDDFFEEECEECCCACCCCCC:AADCCBCC>CAC <ccccc:@cb@@bab##< td=""><td>CC:Z:15 MD:Z:85G14 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:</td></ccccc:@cb@@bab##<>	CC:Z:15 MD:Z:85G14 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
1 XN:i:0 X0:i:0 CP:i:102518437 AS:i:-5 XS:A:- YT:Z:UU	
HWI-ST495_129147882:3:2111:3117:78828 83 1 12746 3 100M = 12634 -212	GGGAGTGGCGTCGCCCCTAGGGCCTCTACGGGGCCCGGCATCTCCTGTCTCCTGGAGAGGCTTCGATGCCCCTCCACACCCCTCTTGATCTTCCCTGTGATGTD
DCABDBDDDDDDDDDDDDDDDDDBDB@BDDDB@;CCCCCDEFD@;.? <higgeigehigjjjiigigiihegfehfjiiiiigjjjjhhhhffffc@< td=""><td>CC:Z:15 MD:Z:37G62 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:</td></higgeigehigjjjiigigiihegfehfjiiiiigjjjjhhhhffffc@<>	CC:Z:15 MD:Z:37G62 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
1 XN:i:0 X0:i:0 CP:i:102518325 AS:i:-5 XS:A:- YT:Z:UU	
HWI-ST495_129147882:3:1102:4242:26638 99 1 13503 3 100M = 13779 376	CGCTGTGCCCTTCCTTTGCTCTGCCCGCTGGAGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAC
CCFFFFHHHHHJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 X0:i:0 CP:i:114357414 AS:i:0 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:1309:15328:74082 99 1 13534 3 100M = 13780 346	AGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAGTCCAGAGTGTTGCCAGGAGCCCAGGGACCCAGGCACAGG@
CCFFFADHHHHFIJJJJJJIJIJIHIJJJIHJJJJJJJJJJJJJJJ	CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 XO:i:0 CP:i:114357383 AS:i:0 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:1308:10126:19636 99 1 13779 3 100M = 14027 348	CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCAGACCCATCTGCTACTGCCCTTTCTATAATAACTAAAGTTAGCTGC
CCFFFFHHGHHJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 XO:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:1102:4242:26638 147 1 13779 3 100M = 13503 -376	CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCAGACCCATCTGCTACTGCCCCTTTCTATAATAACTAAAGTTAGCTG#
##DCCDDDCCBBBABCCDDDCBDDBBDHC?=GIIIIIIIGIIIIJHJIIJJIGIIIIJHJIIJJIGIIIIJHJIJJJJJIGHGJJIJIJJJJJIIIIGGFGHHHHFFFFFCCC	CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 X0:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU	
mgriffit@linus270 🗠	

bioinformatics ca

Introduction to the SAM/BAM format

- The specification
 - <u>http://samtools.sourceforge.net/SAM1.pdf</u>
- The SAM format consists of two sections:
 - Header section
 - Used to describe source of data, reference sequence, method of alignment, etc.
 - Alignment section
 - Used to describe the read, quality of the read, and nature alignment of the read to a region of the genome
- BAM is a compressed version of SAM
 - Compressed using lossless BGZF format
 - Other BAM compression strategies are a subject of research. See 'CRAM' format for example
- BAM files are usually 'indexed'
 - A '.bai' file will be found beside the '.bam' file
 - Indexing aims to achieve fast retrieval of alignments overlapping a specified region without going through the whole alignments. BAM must be sorted by the reference ID and then the leftmost coordinate before indexing

SAM/BAM header section

- Used to describe source of data, reference sequence, method of alignment, etc.
- Each section begins with character '@' followed by a two-letter record type code. These are followed by two-letter tags and values

bioinformatics.ca

- @HD The header line
 - VN: format version
 - SO: Sorting order of alignments
- @SQ Reference sequence dictionary
 - SN: reference sequence name
 - LN: reference sequence length
 - SP: species
- @RG Read group
 - ID: read group identifier
 - CN: name of sequencing center
 - SM: sample name
- @PG Program
 - PN: program name
 - VN: program version

SAM/BAM alignment section

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
$\star 2$	FLAG	Int	$[0,2^{16}-1]$	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	$[0, 2^{29}-1]$	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
$\star 6$	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next segment
8	PNEXT	Int	$[0, 2^{29}-1]$	Position of the mate/next segment
9	TLEN	Int	$[-2^{29}+1,2^{29}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Example values

1	QNAME	e.g.	HWI-ST495_129147882:1:2302:10269:12362 (QNAME)
2	FLAG	e.g.	99
3	RNAME	e.g.	1
4	POS	e.g.	11623
5	MAPQ	e.g.	3
6	CIGAR	e.g.	100M
7	RNEXT	e.g.	=
8	PNEXT	e.g.	11740
9	TLEN	e.g.	217
10	SEQ	e.g.	${\tt CCTGTTTCTCCACAAAGTGTTTACTTTTGGATTTTTGCCAGTCTAACAGGTGAAGCCCTGGAGATTCTTATTAGTGATTTGGGCTGGGGCCTGGCCATGT$
11	QUAL	e.g.	CCCFFFFFHHHHHJJIJFIJJJJJJJJJJJJJJJJJJJJJ

bioinformatics.ca

SAM/BAM flags explained

- <u>http://broadinstitute.github.io/picard/explain-flags.html</u>
- 12 bitwise flags describing the alignment
- These flags are stored as a binary string of length 11 instead of 11 columns of data
- Value of '1' indicates the flag is set. e.g. 00100000000
- All combinations can be represented as a number from 1 to 2048 (i.e. 2¹¹-1). This number is used in the BAM/SAM file. You can specify 'required' or 'filter' flags in samtools view using the '-f' and '-F' options respectively

I	Bit	Description
1	0x1	template having multiple segments in sequencing
2	0x2	each segment properly aligned according to the aligner
4	0x4	segment unmapped
8	0x8	next segment in the template unmapped
16	0x10	SEQ being reverse complemented
32	0x20	SEQ of the next segment in the template being reverse complemented
64	0x40	the first segment in the template
128	0x80	the last segment in the template
256	0x100	secondary alignment
512	0x200	not passing filters, such as platform/vendor quality controls
1024	0x400	PCR or optical duplicate
2048	0x800	supplementary alignment

Note that to maximize confusion, each bit is described in the SAM specification using its hexadecimal representation (i.e., '0x10' = 16 and '0x40' = 64).

RNA sequencing and analysis

CIGAR strings explained

Op	BAM	Description
М	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
Ν	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
Н	5	hard clipping (clipped sequences NOT present in SEQ)
Р	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

- The CIGAR string is a sequence of base lengths and associated 'operations' that are used to indicate which bases align to the reference (either a match or mismatch), are deleted, are inserted, represent introns, etc.
- e.g. 81M859N19M
 - A 100 bp read consists of: 81 bases of alignment to reference, 859 bases skipped (an intron), 19 bases of alignment

Introduction to the BED format

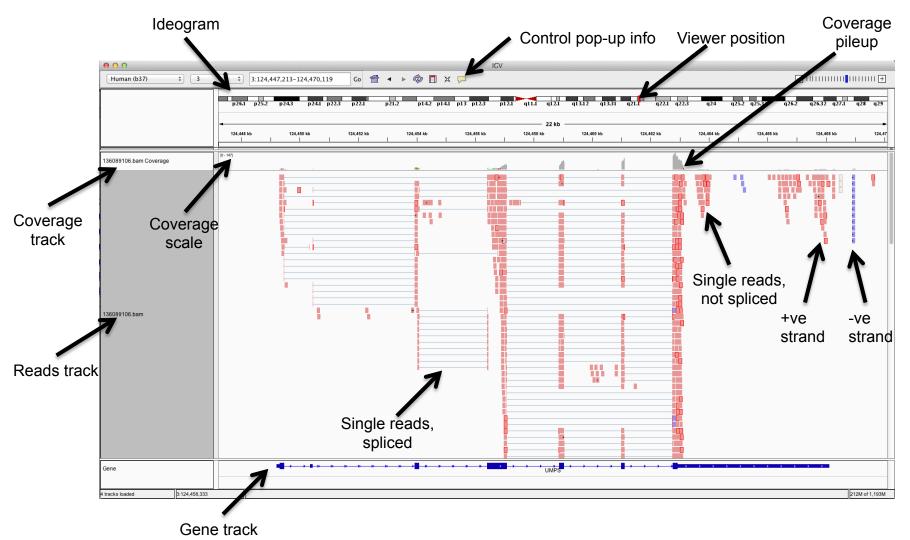
- When working with BAM files, it is very common to want to examine a focused subset of the reference genome

 e.g. the exons of a gene
- These subsets are commonly specified in 'BED' files
 - <u>https://genome.ucsc.edu/FAQ/FAQformat.html#format1</u>
- Many BAM manipulation tools accept regions of interest in BED format

- Basic BED format (tab separated):
 - Chromosome name, start position, end position
 - Coordinates in BED format are 0 based

Manipulation of SAM/BAM and BED files

 Several tools are used ubiquitously in sequence analysis to manipulate these files


bioinformatics.ca

- SAM/BAM files
 - samtools
 - bamtools
 - picard
- BED files
 - bedtools
 - bedops

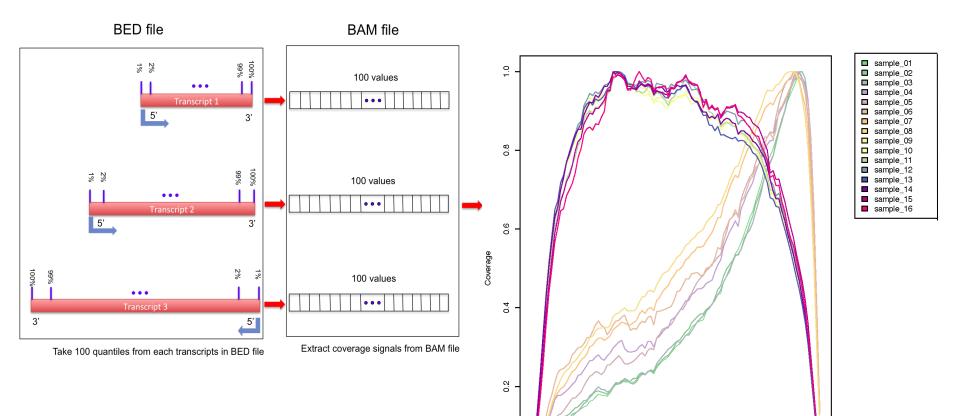
How should I sort my SAM/BAM file?

- Generally BAM files are sorted by position
 - This is for performance reasons
 - When sorted and indexed, arbitrary positions in a massive BAM file can be accessed rapidly
- Certain tools require a BAM sorted by <u>read name</u>
 - Usually this is when we need to easily identify both reads of a pair
 - The insert size between two reads may be large
 - In fusion detection we are interested in read pairs that map to different chromosomes...

Visualization of RNA-seq alignments in IGV browser

RNA sequencing and analysis

Alternative viewers to IGV


- Alternative viewers to IGV
 - <u>http://www.biostars.org/p/12752/</u>
 - <u>http://www.biostars.org/p/71300/</u>
- Artemis, BamView, Chipster, gbrowse2, GenoViewer, MagicViewer, Savant, Tablet, tview

Alignment QC Assessment

bioinformatics.ca

- 3' and 5' Bias
- Nucleotide Content
- Base/Read Quality
- PCR Artifact
- Sequencing Depth
- Base Distribution
- Insert Size Distribution

Alignment QC: 3' & 5' Bias

0.0

20

40

60

Gene body percentile (5'->3')

80

http://rseqc.sourceforge.net/

RNA sequencing and analysis

bioinformatics.ca

100

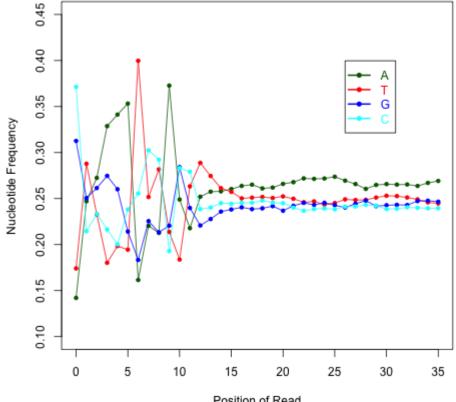
Alignment QC: Nucleotide Content

- Random primers are used to reverse transcribe RNA fragments into double-stranded complementary DNA (dscDNA)
- Causes certain patterns to be over represented at the beginning (5'end) of reads
- Deviation from expected A%=C%=G%=T%=25%

Journal List > Nucleic Acids Res > v.38(12); 2010 Jul > PMC2896536

Nucleic Acids Research

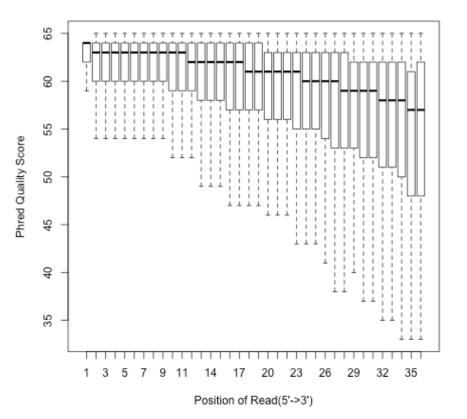
Nucleic Acids Res. 2010 Jul; 38(12): e131 Published online 2010 Apr 14. doi: 10.1093/nar/gkg224


Biases in Illumina transcriptome sequencing caused by random hexamer

Kasper D. Hansen,^{1,*} Steven E. Brenner,² and Sandrine Dudoit^{1,3}

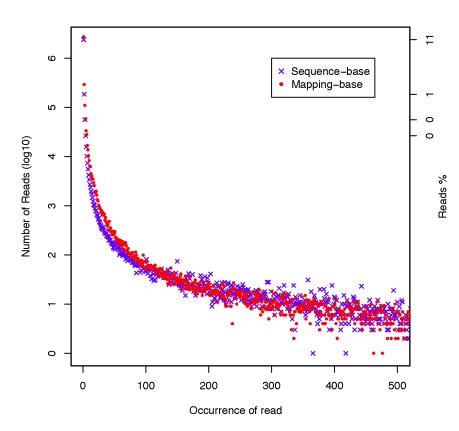
Author information
Article notes
Copyright and License information

This article has been cited by other articles in PMC.


Position of Read

http://rseqc.sourceforge.net/

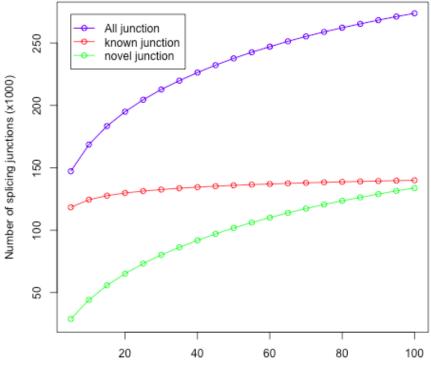
bioinformatics ca


Alignment QC: Quality Distribution

- Phred quality score is widely used to characterize the quality of basecalling
- Phred quality score = -10xlog(10)P, here P is probability that base-calling is wrong
- Phred score of 30 means there is 1/1000 chance that the base-calling is wrong
- The quality of the bases tend to drop at the end of the read, a pattern observed in sequencing by synthesis techniques

Alignment QC: PCR Duplication

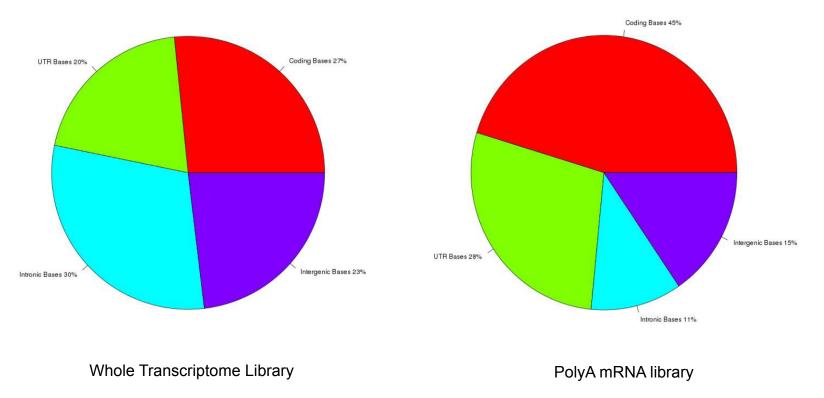
- Duplicate reads are reads that have the same start/end positions and same exact sequence
- In DNA-seq, reads/start point is used as a metric to assess PCR duplication rate
- In DNA-seq, duplicate reads are collapsed using tools such as picard
- How is RNA-seq different from DNAseq?


http://rseqc.sourceforge.net/

RNA sequencing and analysis

Alignment QC: Sequencing Depth

Have we sequenced deep enough?


- In DNA-seq, we can determine this by looking at the average coverage over the sequenced region. Is it above a certain threshold?
- In RNA-seq, this is a challenge due to the variability in gene abundance
- Use splice junctions detection rate as a way to identify desired sequencing depth
- Check for saturation by resampling 5%, 10%, 15%, ..., 95% of total alignments from aligned file, and then detect splice junctions from each subset and compare to reference gene model.
- This method ensures that you have sufficient coverage to perform alternative splicing analyses

percent of total reads

bioinformatics.ca

Alignment QC: Base Distribution

• Your sequenced bases distribution will depend on the library preparation protocol selected

RNA sequencing and analysis

Alignment QC: Insert Size

fragment		
fragment + adaptors	~~~====================================	
SE read	>	
PE reads	R1>	<r2< td=""></r2<>
unknown gap		


PE reads	R1>	<r2< th=""></r2<>
fragment	~~~====================================	============================
insert	=======================================	
inner mate		

bioinformatics.ca

http://thegenomefactory.blogspot.ca/2013/08/paired-end-read-confusion-library.html

Alignment QC: Insert Size

Mean=60;SD=52

Consistent with library size selection?

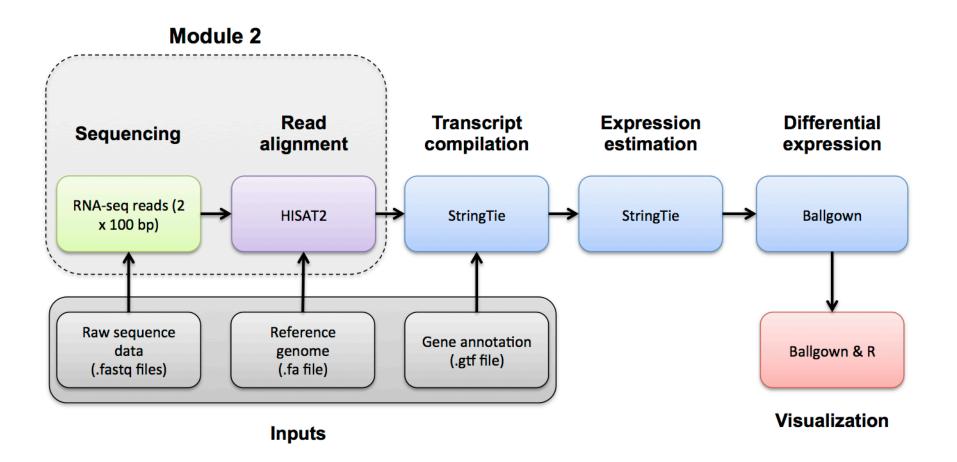
http://rseqc.sourceforge.net/

RNA sequencing and analysis

BAM read counting and variant allele expression status

• A variant C->T is observed in 12 of 25 reads covering this position. Variant allele frequency (VAF) 12/25 = 48%.

• Both alleles appear to be expressed equally (not always the case) -> heterozygous, no allele specific expression


• How can we determine variant read counts, depth of coverage, and VAF without manually viewing in IGV?

RNA sequencing and analysis

Introduction to tutorial (Module 2)

HISAT2/StringTie/Ballgown RNA-seq Pipeline

RNA sequencing and analysis

We are on a Coffee Break & Networking Session

bioinformatics.ca