

Canadian Bioinformatics Workshops

www.bioinformatics.ca

Creative Commons

This page is available in the following languages:

Afrikaans български Català Dansk Deutsch Ελληνικά English English (CA) English (GB) English (US) Esperanto Castellano Castellano (AR) Espeñol (CL) Castellano (CO) Espeñol (Ecuador) Castellano (MX) Castellano (PE) Euskara Suomeksi français français (CA) Galego עברת hrvatski Magyar Italiano 日本語 한국어 Macedonian Melayu Nederlands Norsk Sesotho sa Leboa polski Português română slovenski jezîk српски srpski (latinica) Sotho svenska 中文 雅語 (台灣) isiZulu

Learn how to distribute your work using this licence

RNA-Seq Module 2 Alignment and Visualization (tutorial)

Malachi Griffith, Obi Griffith, Fouad Yousif Informatics for RNA-seq Analysis May 28-30, 2018

Learning Objectives of Tutorial

- Run HISAT2 with parameters suitable for gene expression analysis
- Use samtools to demonstrate the features of the SAM/ BAM format and basic manipulation of these alignment files (view, sort, index, filter)
- Use IGV to visualize RNA-seq alignments, view a variant position, etc.
- Determine BAM-read counts at a variant position
- Use samtools flagstat, samstat, FastQC to assess quality of alignments

2-i. Adaptor trim

- Use Flexbar to trim sequence adapter from the read FASTQ files
 - The output of this step will be trimmed FASTQ files for each data set.

- Compare the FastQC reports for fastq files before and after trimming
- <u>http://sourceforge.net/projects/flexbar/</u>

2-ii. Align reads with HISAT2

- Align all reads in the 6 libraries of the test data
 - 6 libraries with two files each (one for each read1 and read2 of the paired-end reads)
- Use HISAT2 for the alignment
 - Supply the bowtie indexed genome obtained in section 1-iv
 - The '-dta' option tells HISAT2 to report alignments tailored for transcript assemblers
- Since there are 6 libraries in the test data set, 6 alignment commands are run
- On a test system, each of these alignments took ~4 seconds using 8 CPUs

- Each alignment job outputs a SAM/BAM file
 - <u>http://samtools.sourceforge.net/SAM1.pdf</u>

2-iii. Post-alignment visualization

- Create indexed versions of bam files
 - These are needed by IGV for efficient loading of alignments
- Visualize spliced alignments
 - Identify exon-exon junction supporting reads
 - Identify differentially expressed genes
- Try to find variant positions
- Create a pileup from bam file
- Determine read counts at a specific position

2-iii. Post-alignment visualization (IGV)

RNA sequencing and analysis

2-iv. Post-alignment QC

- Use 'samtools view' to see the format of a SAM/BAM alignment file
 - Use 'FLAGs' to filter out certain kinds of alignments
- Use 'samtools flagstat' to get a basic summary of an alignment
- Use FastQC to perform basic QC of your alignments
- Optional: explore RSeQC for alignment QC

2-iv. Post-alignment QC (RSeQC)

RNA sequencing and analysis

We are on a Coffee Break & Networking Session

bioinformatics.ca

RNA sequencing and analysis