

Canadian Bioinformatics Workshops

www.bioinformatics.ca

This page is available in the following languages:

Afrikaans български Català Dansk Deutsch Еλληνικά English (CA) English (GB) English (US) Esperanto Castellano (AR) Español (CL) Castellano (CO) Español (Ecuador) Castellano (MX) Castellano (PE) Euskara Suomeksi français français (CA) Galego איביי hrvatski Magyar Italiano 日本語 한국어 Macedonian Melayu Nederlands Norsk Sesotho sa Leboa polski Portuguës română slovenski jezik српски srpski (lalinica) Sotho svenska 中文 季語 (台灣) isiZulu

Attribution-Share Alike 2.5 Canada

You are free:

to Share - to copy, distribute and transmit the work

to Remix - to adapt the work

Under the following conditions:

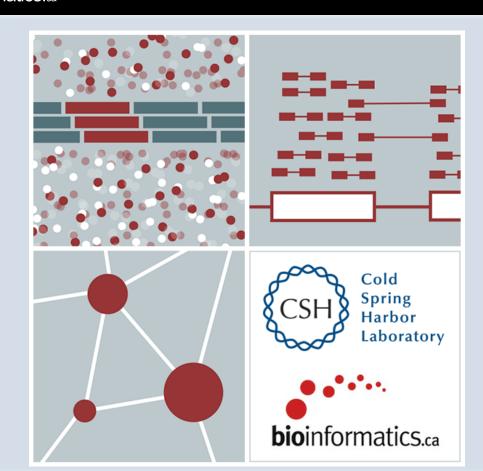
Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar licence to this one.

- . For any reuse or distribution, you must make clear to others the licence terms of this work.
- · Any of the above conditions can be waived if you get permission from the copyright holder.
- The author's moral rights are retained in this licence.

Disclaime

Your fair dealing and other rights are in no way affected by the above.


This is a human-readable summary of the Legal Code (the full licence) available in the following languages:

English French

RNA-Seq Module 5 Isoform Discovery and Alternative Expression (tutorial)

Malachi Griffith and Obi Griffith Informatics for RNA-seq Analysis May 28-30, 2018

Learning Objectives of Tutorial

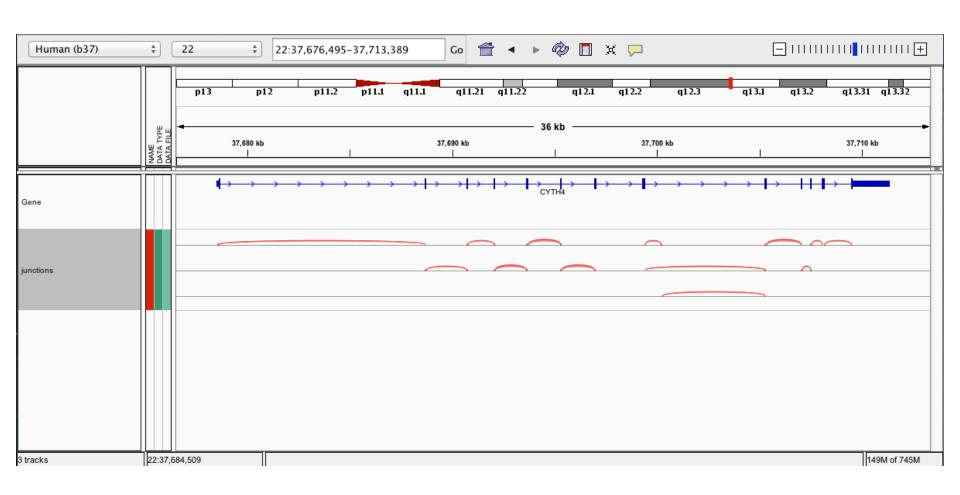
- Learn how to run StringTie in 'reference only', 'reference guided', and 'de novo' modes
- Learn how to use Cuffmerge to combine transcriptomes from multiple StringTie runs and compare assembled transcripts to known transcripts
- Learn how to perform differential splicing analysis with Ballgown
- Examine junctions counts with RegTools and StringTie alternative transcript files at the command line
- Visualize junction counts and StringTie assembled transcripts in IGV

5-i,ii. Running stringtie in 'ref-guided' and 'de-novo' mode

- In Module 3 we ran StringTie in 'ref-only' mode. This mode gives us an expression estimate for each known gene/transcript
- Now we want to be able to potentially identify novel genes, and novel isoforms of known genes
- To accomplish this we will re-run cufflinks in 'ref-guided' and 'de-novo' modes
 - In 'ref-guided' mode a known transcriptome will be used as a guide
 - In 'de-novo' mode no knowledge of the transcriptome will be used at all

Options that govern use of existing transcript information

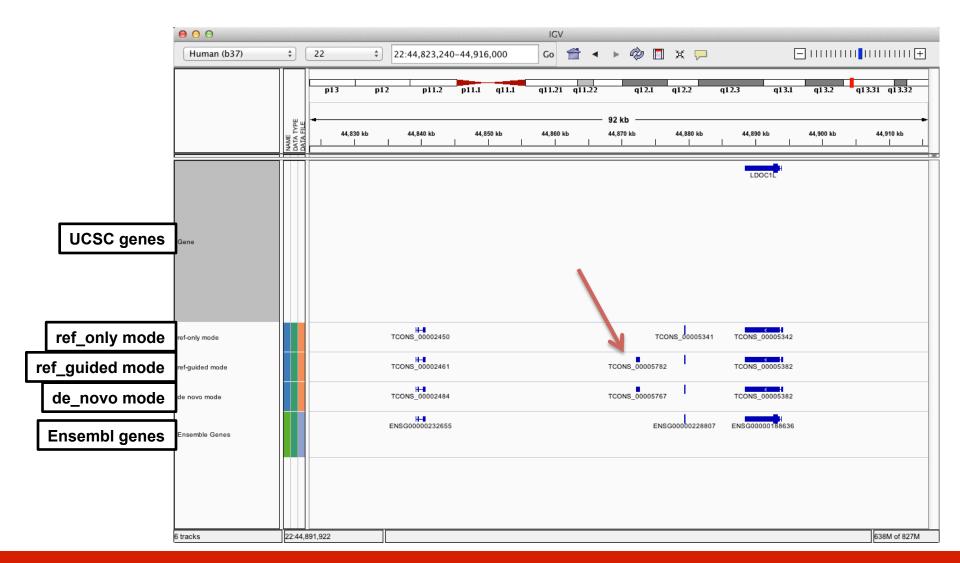
- During indexing of the genome with hisat2, transcript information is provided
 - A transcriptome GTF file is used to extract splice sites and exons
 - These are supplied during the index step to build a better index
 - These will be used to assist the alignment step by allowing alignment to both transcriptome and genome sequences
 - Coordinates from alignments to transcriptomes will be converted back to genome coordinates
 - Even though we supply transcriptome info, hisat2 will not be limited in to known transcripts or splice sites
- Stringtie '-G' option
 - Used to supply a transcriptome GTF file
 - If specified, uses the reference annotation file (in GTF or GFF3 format) to guide the assembly process. We call this the 'ref-guided' analysis mode
- Stringtie '-e' option
 - Limits the processing of read alignments to <u>only</u> estimate and output the assembled transcripts matching the reference transcripts given with the -G option
 - We call this 'reference-only' analysis mode
- Running StringTie with neither '-G' or '-e'
 - We call this 'de-novo' analysis mode

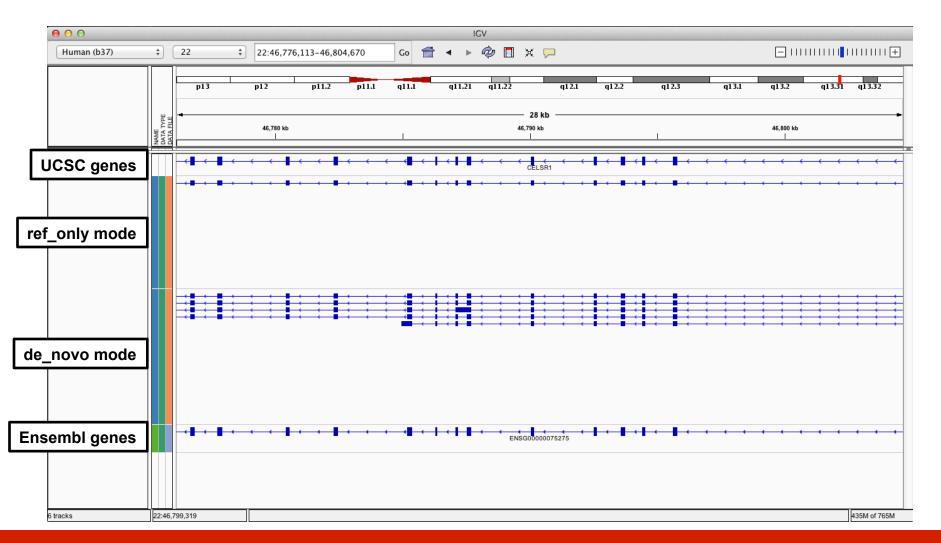

A 'junctions.bed' file

- After alignment, we can create a summary of all reads that support exon-exon junctions
 - e.g. exon1-exon2 has 5 reads
 - e.g. exon1-exon3 has 9 reads
- This file reports all of the unique exon-exon junctions observed and the read counts for each
 - In BED format

track name=junctions description="TopHat junctions"										
22	17062079	17063415	JUNC00000001	3	-	17062079	17063415	255,0,0 2	98,19	0,1317
22	17092740	17095057	JUNC00000002	5	+	17092740	17095057	255,0,0 2	43,91	0,2226
22	17117940	17119543	JUNC00000003	6	+	17117940	17119543	255,0,0 2	40,75	0,1528
22	17152466	17156100	JUNC00000004	3	-	17152466	17156100	255,0,0 2	12,88	0,3546
22	17525819	17528242	JUNC00000005	1	+	17525819	17528242	255,0,0 2	71,29	0,2394
22	17528261	17538007	JUNC00000006	1	+	17528261	17538007	255,0,0 2	55,45	0,9701
22	17566071	17577976	JUNC00000007	10	+	17566071	17577976	255,0,0 2	48,25	0,11880
22	17577951	17578785	JUNC00000008	24	+	17577951	17578785	255,0,0 2	25,99	0,735
22	17578093	17578710	JUNC00000009	1	+	17578093	17578710	255,0,0 2	76,24	0,593

Junction read count


Viewing the junctions.bed in IGV


5-iii,iv. StringTie merge

- https://ccb.jhu.edu/software/stringtie/index.shtml
- StringTie merge combines transcripts predicted from multiple RNA-seq data sets into one view of the transcriptome
 - Do this before running StringTie to compare between multiple conditions
- StringTie merge can also simultaneously compare transcripts to the known transcripts GTF file from Ensembl, etc.
 - http://cufflinks.cbcb.umd.edu/manual.html#class_codes

5-v. Comparison of merged GTFs from each StringTie mode

Comparison of merged GTFs from each StringTie mode

We are on a Coffee Break & Networking Session