

Canadian Bioinformatics Workshops

www.bioinformatics.ca bioinformaticsdotca.github.io

Module ¹ **7 bio**informatics.ca

Genome-Guided and Genome-Free Transcriptome Assembly

bioinformatics.ca

Brian HaasInformatics for RNA-Seq Analysis June 11-13, 2019

Learning Objectives of Module

- Understand the challenges involved in reconstructing transcripts from RNA-Seq data
- Become familiar with computational algorithms and data structures leveraged for transcript assembly
- Appreciate the importance of strand-specific RNA-Seq data for transcript reconstruction
- Differentiate between differential gene expression and differential transcript usage.

Assembly Required

Adapted from G. Raetsch

Advancing RNA-Seq analysis

Brian J Haas & Michael C Zody

Nature Biotech, 2010

New methods for analyzing RNA-Seq data enable *de novo* reconstruction of the transcriptome.

Graph Data Structures Commonly Used For Assembly

Module 7 bioinformatics.ca

Graph Data Structures Commonly Used For Assembly

Splice-align reads to the genome

Splice-align reads to the genome

Alignment segment piles => exon regions

Splice-align reads to the genome

Large alignment gaps \Rightarrow introns

Splice-align reads to the genome

Overlapping but different introns = evidence of alternative splicing

Splice-align reads to the genome

Splice-align reads to the genome

Individual reads can yield multiple exon and intron segments (splice patterns)

Splice-align reads to the genome

Nodes = unique splice patterns

Splice-align reads to the genome 176,800 kb 176,802 kb 176,806 kb 176,808 kb 176,804 kb

Construct graph from unique splice patterns of aligned reads.

Splice-align reads to the genome 176,800 kb 176,802 kb 176,806 kb 176,808 kb 176,804 kb

Construct graph from unique splice patterns of aligned reads.

Splice-align reads to the genome 176,800 kb 176,802 kb 176,806 kb 176,808 kb 176,804 kb

Construct graph from unique splice patterns of aligned reads.

Traverse paths through the graph to assemble transcript isoforms

Traverse paths through the graph to assemble transcript isoforms

Reconstructed isoforms

What if you don't have a high quality reference genome sequence?

Genome-free de novo transcript reconstruction to the rescue.

Read Overlap Graph: Reads as nodes, overlaps as edges

Read Overlap Graph: Reads as nodes, overlaps as edges

Generate consensus sequence where reads overlap

Module 7 bioinformatics.ca

Finding pairwise overlaps between *n* reads involves $\sim n^2$ comparisons.

Impractical for typical RNA-Seq data (50M reads)

Module 7 bioinformatics.ca

No genome to align to… De novo assembly required

Want to avoid *n2* read alignments to define overlaps

Use a de Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011

From Martin & Wang, Nat. Rev. Genet. 2011

Construct the de Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011 **Nodes = unique k-mers, Edges = overlap by (k-1)**

Construct the de Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011 **Nodes = unique k-mers, Edges = overlap by (k-1)**

Sequence Assembly via De Bruijn Graphs

Construct the de Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011 **Nodes = unique k-mers, Edges = overlap by (k-1)**

Sequence Assembly via De Bruijn Graphs

Construct the de Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011 **Nodes = unique k-mers, Edges = overlap by (k-1)**

Sequence Assembly via De Bruijn Graphs

Generate all substrings of length k from the reads

Construct the de Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011 **Nodes = unique k-mers, Edges = overlap by (k-1)**

Construct the de Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011

Collapse the de Bruijn graph

Traverse the graph

Assemble Transcript Isoforms

From Martin & Wang, Nat. Rev. Genet. 2011

Contrasting Genome and Transcriptome *De novo* **Assembly**

-
-
- Assemble small numbers of large Mb-length chromosomes
-

Genome Assembly Transcriptome Assembly

- Uniform coverage **•** Exponentially distributed coverage levels
- Single contig per locus $\|\cdot\|$ Multiple contigs per locus (alt splicing)
	- Assemble many thousands of Kb-length transcripts
- Double-stranded data Strand-specific data available

Trinity Aggregates Isolated Transcript Graphs

Genome Assembly Single Massive Graph

Trinity Transcriptome Assembly Many Thousands of Small Graphs

Entire chromosomes represented. I ldeally, one graph per expressed gene.

Trinity – How it works:

Thousands of disjoint graphs

Butterfly Example 1: Reconstruction of Alternatively Spliced Transcripts

Reconstruction of Alternatively Spliced Transcripts

Reconstructed Transcripts

Reconstruction of Alternatively Spliced Transcripts

Reconstructed Transcripts

Reconstruction of Alternatively Spliced Transcripts

Teasing Apart Transcripts of Paralogous Genes Butterfly Example 2:

Teasing Apart Transcripts of Paralogous Genes Butterfly Example 2:

Strand-specific RNA-Seq is Preferred

Computationally: fewer confounding graph structures in de novo assembly: ex. Forward != reverse complement (GGAA != TTCC) Biologically: separate sense vs. antisense transcription

NATURE METHODS | VOL.7 NO.9 | SEPTEMBER 2010 |

Comprehensive comparative analysis of strand-specific **RNA sequencing methods**

Joshua Z Levin^{1,6}, Moran Yassour^{1-3,6}, Xian Adiconis¹, Chad Nusbaum¹, Dawn Anne Thompson¹, Nir Friedman^{3,4}, Andreas Gnirke¹ & Aviv Regev^{1,2,5}

Strand-specific, massively parallel cDNA sequencing (RNA-seq) is a powerful tool for transcript discovery, genome annotation and expression profiling. There are multiple published methods

Nevertheless, direct information on the originating strand can substantially enhance the value of an RNA-seq experiment. For example, such information would help to accurately identify anti-

'dUTP second strand marking' identified as the leading protocol

comparational piperine witompare maiary quatriy meu any RNA-seq method. Using the well-annotated Saccharomyces cerevisiae transcriptome as a benchmark, we compared seven library-construction protocols, including both published and

poundantes or aujacem genes transcribed on opposite stranus and resolve the correct expression levels of coding or noncoding overlapping transcripts. These tasks are particularly challenging in small microbial genomes, prokaryotic and eukaryotic, in which

dUTP 2nd Strand Method: Our Favorite

Modified from Parkhomchuk *et al.* **(2009)** *Nucleic Acids Res.* **37:e123**

Slide from J. Levin

Overlapping UTRs from Opposite Strands

Schizosacharomyces pombe (fission yeast)

Antisense-dominated Transcription

Trinity output: a multi-fasta file

>comp0 c0 seq1 len=5528 path=[1:0-3646 10775:3647-3775 3648:3776-5527]

ACTTATCTCAAAATGTAAGAATTAGATCTGATTGAAATGCTACATTTAGTAAGAAAATCAGCAAGTAACAGAGGAAGTGTAACCCCACCATGACTATTTGTCAACAAGACCAGTGGAGGCCCTACATGTTAGAGCAGG AGTGAGAGAGGAGATTCAGACACAAAACAGTCACGGAAAGCGCTGTCGGAGCTCGGCATGACATAATCAAGAGCAGTTTTCATCTTCTCGCAGACCAGCCTCTTAAGCTGGAGGCTTAGGGAACAGCCCACCAACCTTAG ACAACCECCCAACAGCEFFTCCACCFFTCCCAGAAGACCAGCGGGCTCAGTCTCAGCAGCETTACGAAGCTCACGGCGGCCTGTGCTCAGATTCTCCCTCAAAGTGGGCAGAACTTCCTCACTTCCTCACCCCTGAG ${\tt GTAAACCCAATGAGGGTCTCGGCTTCTAGGTTTTATATATAATAAATTAATTTTATATTTTAATACCCCAAAAAATTAAATTCACATCACAATCCTTCCATGCATTCAAGGAAGGAAGTTCCGGATTAAAACAATGCCAGC$ TGAGTGCAGGTAACTGCTCTGGACTTTCCCCTGCACAGTCTTGGAAAATTTTCTTCTCCCGTAGAGATAGAAGTTCCTCTAACGTGLAGTCCTCAAGTGCAATCAATCAGTGCTTCAAGTCCTTCAAGTCCTTCAATAG ${\tt CCACACCA7TGGA} {\tt AAT7ACACTCGA} {\tt ACTCAGTAACCTACGCTTGAAACTGG7GA} {\tt AAT7GGACATCATCACCTGTTGACCTT7TC7T7TC7T7T7TC7G7T7T7TCT4GATTATT7A7T7GCTCGCA} {\tt AACACACCT}$ TCACAGTAACTGGACACCCAAAGGATGACAGAAATAGTCTCAACGAAGAAGACCAGATTCTCTAGGACTGGAGCTGGGTCTTCAAATTGCCATCTGTAACTTCTAAGGTCCCCTTTACATGTGCTGAAGACACCTTT TTGCTTCAAGTAGAAGGTCTAACAGCATCCGCTCAGTGCGTACTTGTGCAAAAATGGAGAGAATTATTCAGCCTGTTCCTAAAAGCGATAAACTCTGGGATCTTCTCAAATGCACATATTTGTAAGCTTGAATAATGTAT ${\tt GOACCTGATTARTGTTGTCTCCTGCCACCTGGCACACCAAGACCTCGAACACCTCAGACCTGCTGAAACCTGCCCTTGCAACCTTCCCCCAAACTTCTGAAATACCGGAACATTAACTCTTCAGGCTCACCCACCACCTGTATT$ TCGTCATTACAGCCTTGGCTCCGCAAGCGCCTGATGAGCTCCAGCTTAGCTAGGTGTGGGCCTCGGACATGTCGAGACCTTTGTGATGCCTCTCTATCCTCTCTATAAACTTCACAGCATCTTCTGCAGAGCAGTG TACTTCCCCTTCTAAGGAGTGTTCCCCCTCAGCAGGCGGCGTCCAGGCTTCCTCAATCAGTCGAAAGAGAATCAAAATCAGATAGAACTGCCAGTCATCTGAGTTTTTAGAAAGGAGCGTCGGGAAAGGGCGT TGCACTCCGGCCACTTGCTCAGCTTGTACATGGCCATGCATTTGTTTCCCGACTCTGAATTTCACTTGTCAACTTCTCTCCTAATTTTCCTCTAATGACATCCAGGGCTTCCTGGTACTTCCCAAGCGCTCCAAGCGCTCCAAGCGCCCAAGCGCCCAAGCGCCCAAGCGCCCAAGCGCCCAAGCGCCAAGCGCCAAGCGCCAAGCGCCAAGCGCCAACACAC ${\tt GCTCATCACCTAACTAAATAAGTATTCTGAGGATCCTTATACTTATACAGACCCTGCTGCTGCTGCTTCTTCTTCTTCTTCTTCTTCTTACTCCACTCTTCTAAAGCCATTAAAGGTGAAGATGGTACTCCTCCTTTCGGAA$ ${\tt CAGCCCCCGCTCTTAGGCTCCTCCACATGGCCCCCGCCCTCACATGACAAACCCACAAACCTCAGT}$

>comp0 c0 seq2 len=5399 path=[1:0-3646 3648:3647-5398]

GTAAACAGTAGTCGTGTTTTGTGGTTTTAAATATCAATTTACCACACAAAAACAAAACAAAACCAATAAACCCATATAAACCACAGCAGCACTGGGCCTTGAGCATTCTCCTTAGATGCTAGTGACATACAGG ACTTATCTCAAAATGTAAGAATTAGATCTGATTGAAATGCTACATTTAGTAAGAAAATCAGCAAGTAACAGAGGAAGTGTAACCCCACCATGACATTTGTCAACAAGACCAGTGGAGGCCCTACATGTTAGAGGCCCTACA TATTCAAAAAGGCCCTTTTTTGGGGATGGAGCACGTGATACTCTGATGCAACCATGATGTAGGCTCCAGCACCATCCTACAAGTAAGAAAGTAGCACACTTTCCTTACAAGTAAATTAGTTACCACTATGCTGA TTTGTGAATCCCAGACAGTTACGATAAAGAATGCAATGGTGTGCTGCTGGAGCAGTCCATGGGAAAGACCAGTCCTCACCAAGTCATCTTTTCACCTTACAGTTACTCTCAGGAATAAAGTGACAGGGAACAAGAACAGGA AGTGAGAGAGGAGATTCAGACACAAAACAGTCACGGAAAGCGCTGTCGGAGCTCGGCATGACATAATCAAGAGCAGTTTTCATCTTCTCGCAGACCAGCCTCTTAAGCTGGAGGCTTAGGGAACAGCCCACCAACCTTAG ACAACCECTCCAACAGCETTTCCACCTTCCCAGAAGACCAGCGGGGCTCAGTCTCAGCAGCTCAGGCCCACGGTGGGCCTGTGCTCAGATTCTCCCTCAAAGTGGGCAGAACTTCCTCACTTCCTCACCCCTGAG ${\tt CAGAGGTGTTGTTGCGGGGAAGGTGGFGGTCGCTGTGGAACCTGGGGGTGTTATGGTTCAGAATCCTTAAATTTTTAGTTTTTGTAGTCCCTGAAGTCTCTTCTCAGCAGTCCCCTGCCCGAGTCCGAGTCTGCTGGAAG$ TGAGTGCAGGTAACTGCTCTGGACTTTCCCCTGCACAGTCTTTGAAAAFTTTCTTTCCCGTAGAGATAGAAGTTTCCTCTAACGTGAGCTCCTCAAGTCTAAGTGCAATCAGATGTCTTCAAGTCCTTTAATATGAT TCACAGTAACTGGACACCCAAAGGATGACAGAAATAGTCTCAACGAAGAAGCAGATTCTCTAGGACTGCAGGTTGCACATTGCCATCTGTAACTTCTAAGAGGTCCCCTTTACATGTGCTGAAGACACCTTT $\label{thm:main} Coarrowc \texttt{sc} \texttt{sc} \texttt{sc} \texttt{sc} \texttt{sc} \texttt{c} \texttt{sc} \texttt{c} \texttt{sc} \texttt{c} \texttt{sc} \texttt{c} \texttt{sc} \texttt{c} \texttt{sc} \texttt{c} \texttt{sc} \texttt{c} \texttt{c} \texttt{c$ TTGCTTCAAGTAGAAGGTCTAACAGCATCCGCTCAGTGCGTACTTGTGCAAAATGGAGAGAATTATTCAGCCTGTTCCTAAAAGCGATAAACTCTGGGATCTTCTCAAATGCACCATATTTGTAAGCTTGAATAATGTAT TCTGAGGTATCTTTCTGGTTGGAGTGGAAAAAACCTGAGTGCAAAGTTACAGGACTGGGAGGCAGCATACTGACCCAGGATGCAGCATATCGGGTCAGAAGATAGCCAATGGTGCGTGGATGTCCTTAGCATC ACCACATCCAGCTTCTGACTCTTATCCATGCTGTGGTACAAGCCAAGGAGCGTGTCAGCTGCACAACACAGAGTCGTGCAGGCTCGGATGTCGGCCAGGCCAGGCAAGCTTATCCTCTGTCGGCGTCGACAATGG AACAACTCCAAGGAGCTGGTTAATGAATTGTGTGCACTGGGCGGCAAGGCAAGAGAGCAACGAACACCTTCAGGTCTGTGAAGCAGGCTTATCCCCGAACTTCTTGAAATACTGGAACATTAACTCTTCAGGGTCAC ${\tt GCAAGCGAGTGTACCTTCCCCTTCAAGGAGTCTTCCCCCTCAGGCGACGCTCCAGCTTCCTCAATCAGTCGAAAGAAAGAAATCGAAATAAATCCAGATAGACTCCGAGTTCTTCAAAAGGAGCACTCG$ TCCATCATCAACCTCATCACTCACCAAAAGTAGTAAGGGTTTTTGGGGACAATCTTATACAGAGCCATGCCAGCCTGCTGCTATCTCGCCCACTCTGGCATAGGCCATGAAGAGGTGAGAGTGGTACTCCTC TGAAAGCTTCTTCCTGCCCAGTTCTCTGTAAACCAATGGCCTTGAGAACCTTTGCACAGAGATCTTTGTGTTTCTTCAACAGTT7ATCAGCTTGCTGAATTGCCATTT7ATTATCCATTATCCAAGATAATCG TAAATGGGCCGGAGGCGCCGGTCGTTAGGGTCCTGCACATGGCCCCCGCGTCGCCATGATGACAAGCGCAGAACCTCAGT

Flavors of Differential Expression Analyses

- Transcripts:
	- Differential Transcript Expression (DTE)
	- Differential Transcript Usage (DTU)
	- Differential Exon Usage (DEU)
- Gene:
	-
	- Differential Gene Expression (DGE)
– Gene Differential Expression (GDE)

Differential Gene Expression (DGE) and Differential Transcript Expression (DTE) (Example 1)

Differential Gene Expression (DGE) and Differential Transcript Expression (DTE) (Example 1)

Differential Gene Expression (DGE) and Differential Transcript Expression (DTE) (Example 2)

Yes

Differential Gene Expression (DGE) and Differential Transcript Expression (DTE) (Example 3)

Differential Gene Expression (DGE) and Differential Transcript Expression (DTE) (Example 3)

Clarifying view: (DTE or DTU or DGE) as special cases of Ge

Ntranos, Yi, et al., 2018 – see supp.

[See Lior Pachter's blog post: https://liorpachter.wordpress.com/2019/01/07/fast-and-accurate-gene-differential-expressio](https://liorpachter.wordpress.com/2019/01/07/fast-and-accurate-gene-differential-expression-by-testing-transcript-compatibility-counts/)nby-testing-transcript-compatibility-counts/

High Confidence Differential Transcript Expression is Difficult to Attain With Many Candidate Isoforms

Measure Differential Transcript Usage (DTU) via Differential Exon Usage (DEU)

Module bioinformatics.ca

Measure Differential Transcript Usage (DTU) via Differential Exon Usage (DEU)

Genome Res. 2012 Oct; 22(10): 2008-2017. doi: 10.1101/gr.133744.111

PMCID: PMC3460195

Figure 3. The treatment of knocking down the splicing factor pasilla affects the fourth exon (counting bin E004) of the gene Ten-m (CG5723). (Top panel) Fitted values according to the linear model; (middle panel) normalized counts for each sample; (bottom panel) flattened gene model. (Red) Data for knockdown samples; (blue) control.

Enabling Differential Transcript Usage Analysis for De novo Transcriptome Assemblies

Enabling Differential Transcript Usage Analysis for De novo Transcriptome Assemblies

Transcript splice graph:

Similar method and protocols now integrated into Trinity: [https://github.com/trinityrnaseq/trinityrnaseq/wiki/SuperTranscrip](https://github.com/trinityrnaseq/trinityrnaseq/wiki/SuperTranscripts)ts

Enabling Differential Transcript Usage Analysis for De novo Transcriptome Assemblies

Transcript splice graph:

Similar method and protocols now integrated into Trinity: [https://github.com/trinityrnaseq/trinityrnaseq/wiki/SuperTranscrip](https://github.com/trinityrnaseq/trinityrnaseq/wiki/SuperTranscripts)ts DEXseq for DTU, GATK for Variant Detection

Time for Transcript Reconstruction Lab

We are on a Coffee Break & Networking Session

Workshop Sponsors:

