

Canadian Bioinformatics Workshops

www.bioinformatics.ca bioinformaticsdotca.github.io

Supported by

Creative Commons

This page is available in the following languages: Afrikaans български Català Dansk Deutsch Ελληνικά English English (CA) English (GB) English (US) Esperanto Castellano Castellano (AR) Espeñol (CL) Castellano (CO) Español (Ecuador) Castellano (MX) Castellano (PE) Euskara Suomeksi français français (CA) Gatego אירעי hrvatski Magyar Italiano 日本語 한국어 Macedonian Metayu Nederlands Norsk Sesotho sa Lebos polski Português română slovenski jezik opnosv srpski (latinica) Sotho svenska 中文 華語 (台灣) isiZulu

Attribution-Share Alike 2.5 Canada

single-cell RNA-sequencing

Allegra Petti

Informatics for RNA-seq Analysis

June 17-19, 2020

bioinformatics.ca

Washington University School of Medicine in St. Louis

Part I: Introduction to scRNA-seq, cellranger, and the loupe browser

- Learning Objectives:
 - Understand the applications of scRNA-seq, and how it differs from bulk RNA-seq
 - Know the advantages of different scRNA-seq platforms
 - Understand the 10xGenomics technology
 - Learn the Cellranger commands for initial data processing of 10xGenomics data

- Understand Cellranger output files
- Learn to assess the success of your experiment
- Use the loupe browser to perform initial data exploration

Single-cell RNA-seq captures expression heterogeneity

Identifies and counts unique transcripts in each cell

Single-cell RNA-seq captures expression (and genetic) heterogeneity

Identifies and counts unique transcripts in each cell

For many genes, multiple samples:

A new era in biology and medicine?

Community Goals

- Redefine cell "type"
- Redefine relationships among cell types
- Catalog all cell types in all diseased and normal tissues
- Discover/define new cell types

Personalized medicine

- Variation at the level of the individual between individuals
- scRNA-seq: Variation at the level of the cell within AND between individuals
 - High-resolution variation in diseased and normal cell types
 and states
 - Enables cross-patient correlations to be made at the level of individual cells

Why the optimism?

scRNA-seq in historical context of cell characterization:

1665	Hooke	Coined "cell"
mid- 1800s	assorted; dye industry	Histological stains
1855	Virchow	Cellular theory
1941	Coons	Immunohistochemistry
1994	Chalfie	Individual cells with GFP
1953 1968	Coulter Fulwyler	Flow cytometry: 17-18 features/cell
2009	U. Toronto, DVS	Mass cytometry (CyTOF): ~100 features/cell
2009- 2015	Tang, Klein, Macosko	single-cell RNA-seq: 2-6K features/cell (~20K/sample)

Revisiting concept and definition of "cell type"

- Cell type stable, "hard-wired" (e.g. by transcription factors)
- Components:
 - Function/phenotype
 - Lineage
 - often continuous (not discrete)
 - State
 - Variable and continuous
 - reprogrammable, "soft-wired" (e.g. by environment)
 - Normal range of cell states vs. pathological range

Waddington Landscape

High dimensional scRNA-seq data permits detailed analysis and reconstruction of cell lineage and state:

Farrell et al. Science 2018

Camp et al, Science 2019; S.A. Morris, Company of Biologists 2019

Technology

Technology Development

Technology comparison

Ding J, et al. (2020) Nature Biotech. 38:737-746

What do these methods capture?

Ding J, et al. (2020) Nature Biotech. 38:737-746

Plate-based methods are more sensitive...

...but are not necessarily better

Ding J, et al. (2020) Nature Biotech. 38:737-746

Popular commercial platforms: 10x Genomics vs Fluidigm SMART-Seq

• Drop-Seq: 10x Genomics

- 3' V3.1 GEM Gene expression
- 5' V1 Gene expression (more sequence; less-biased coverage; TCR/BCR sequencing)
- Plate-based: Fluidigm
 - C1 SMART-Seq2: lower-throughput, more genes/cell, longer cDNAs, no UMIs
 - SMART-Seq3*: lower-throughput, more genes/cell, longer cDNAs (uses UMIs)
- All have limitations: must choose technology best suited to application
 - Lafzi et al, Nature Protocols 13:2742-2757
- Extensions/Variations
 - Single-nucleus RNA-sequencing for frozen or hard-to-dissociate tissues
 - CITE-seq (aka "feature barcoding")
 - scATAC-seq

10xGenomics Technology, Pipeline, and Analysis

What happens in the Chromium instrument?

"Single Cell 3' Solution" (10x Genomics)

Barcoded bead + cell = bar-coded cDNA library

Fig. 1. Schematic of a SC3' v2 Gel Bead oligo primer.

How deeply do you need to sequence?

Rule of thumb: Achieve 90% saturation

Official Recommendations (reads/cell):

3' V3: 20K 3' V2: 50K 5' 20K 5' with variant discovery: 200K 5' V(D)J: 5K Higher for cell lines

bioinformatics.ca

Ding J, et al. (2020) Nature Biotech. 38:737-746

IEUNIUAL NUIE

Chromium[™] Single Cell V(D)J Libraries – Sequencing Metrics for Illumina[®] NovaSeq[®]

Randomer

And more! https://teichlab.gith@b.io/scg lib structs/

Cell Type

Peripheral blood mononuclear cells (PBMCs)

Jurkat (lymphoblast cell line)

Antigen specific T cells

bioinformatics.ca

Poly(dT)VN

UMI

P7

P7

i7: 8

Index

Read 2

Libraries

2

6

52

5' vs. 3' Transcript Coverage

Petti A, et al. (2019) Nat. Comm. 10:3660

scRNA-seq recapitulates bulk transcript coverage

Petti A, et al. (2019) Nat. Comm. 10:3660

Post-sequencing workflow

Cellranger

- cellranger and all dependencies (e.g. reference transcriptomes) can be downloaded from the 10x Genomics website:
- <u>https://support.10xgenomics.com/single-cell-gene-</u> <u>expression/software/downloads/latest</u>
- Extensive instructions are provided here: <u>https://support.10xgenomics.com/single-cell-gene-</u> <u>expression/software/pipelines/latest/using/tutorial_ov</u>

Cellranger Step 1: Sample demultiplexing using 'cellranger mkfastq'

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/mkfastq

Running the 'cellranger mkfastq' command Usually done by sequencing provider

cellranger mkfastq -id=SampleID -run=/path/to/machine/data/directory samplesheet=SampleSheet.csv -csv -qc

- cellranger mkfastq is a wrapper for Illumina's bcl2fastq script, which converts basecall (bcl) files to fastq files
- -qc option is not available for NovaSeq sequencers
- If sequencing provider does this step, you should request the SampleSheet file
- Format of the SampleSheet.csv file (example only!):

Lane,Sample,Index 5,Sample1,SI-GA-E8 5,Sample2,SI-GA-E9 6,Sample1,SI-GA-E8 6,Sample2,SI-GA-E9 7,Sample1,SI-GA-E8 7,Sample2,SI-GA-E9 8,Sample1,SI-GA-E8 8,Sample2,SI-GA-E9

https://support.10xgenomics.com/single-cell-geneexpression/software/pipelines/latest/using/mkfastq#fastq_output

Output of cellranger mkfastq

SampleID/FlowCellID/outs OR SampleID/outs/

```
fastq_path
input_samplesheet.csv
interop_path
qc_summary.json (not available for NovaSeq)
```

```
"sample_qc": {
    "M_FD-DNMT3A_HET_5_mo_DNMT3A_HET_5_mo_10x": {
```

"1": { "barcode_exact_match_ratio": 0.9749976800017514, "barcode_a30_base_ratio": 0.9834758240855174, "bc_on_whitelist": 0.9839895504244381, "gem_count_estimate": 69920. "mean_barcode_ascore": 37.59103822723894, "number_reads": 32295283, "read1_g30_base_ratio": 0.9848257525600684 "read2 a30 base ratio": 0.9071105899361747 }, "2": { "barcode_exact_match_ratio": 0.9734708523492642, "barcode_q30_base_ratio": 0.983418719089427, "bc_on_whitelist": 0.9839573344922891, "gem_count_estimate": 69928, "mean_barcode_ascore": 37.59170178631634, "number_reads": 32157686. "read1_q30_base_ratio": 0.9847541041737509, "read2_q30_base_ratio": 0.9074492953255405 "all": { "barcode_exact_match_ratio": 0.9742358959445298 "barcode_q30_base_ratio": 0.9834473325425862.

bbc_on_whitelist": 0.9839734768463497, "gem_count_estimate": 72805, "mean_barcode_gscore": 37.59136929848026, "number_reads": 64452969, "read1_q30_base_ratio": 0.9847900048459545, "read2_q30_base_ratio": 0.9072795810893632 Base quality (q20 and q30 fraction by cycle) for barcode, UMI, read1, and read 2. Example:

"barcode_q30_fraction_by_cycle": [

0.97418484019826268. 0.97736041198282475. 0.97889368916379427. 0.98058003575024655. 0.98025671019901617. 0.97740489509564854, 0.9847162345141085, 0.98756393926824182. 0.98745237160227162, 0.98848508862667428, 0.9885772992879841. 0.9882130163901619, 0.98774013989239307, 0.98793212425760379. 0.98716427813785512, 0.98738571452544555

bioinformatics.ca

],

},

Cellranger Overview

Figure 1. Schematic of a Single Cell 5' Gel Bead oligo primer.

Zheng, et al. 2016. Nature Communications 8:14049

Cellranger: STAR alignment

STAR = Spliced Transcripts Alignment to a Reference Aligns non-contiguous reads directly to the reference genome Dobin A, et al. (2013) Bioinformatics 29(1):15-21.

Step 1: Seed search for Maximum Mappable Prefix (MMP)

Step 2: Cluster, stitch, and score the seeds from Step 1

Processing aligned reads

- Uses transcript annotation GTF file to bin reads into exonic, intronic, and intergenic reads
- If at least 50% of the read overlaps an exon: exonic
- Otherwise, if it intersects an intron: intronic
- Otherwise, intergenic
- Exonic loci are prioritized in the event of multi-mapping
- If an exonic read corresponds to an annotated transcript, aligned to the same strand, and compatible with single-gene annotation, it is used for UMI counting

Cellranger: Selecting barcodes (cells)

 $m = 99^{\text{th}}$ %tile of expected cells

Analysis of Gene-barcode matrix (better done yourself)

Normalization, dimensionality reduction, data representation

Zheng, et al. 2016. Massively parallel digital transcriptional profiling of single cells. Nature Communications 8:14049

Running 'cellranger count' using the command line

https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome

Transcript alignment, counting, barcode selection, etc, to generate feature-barcode matrix:

cellranger count --id=\$OutName --sample=\$SampleName --fastqs=/path/to/fastqs indices=\$SampleIndices --transcriptome=/path/to/refdata-cellranger-GRCh38-3.0.0 -localmem=64 --localcores=12

Definitions:

\$OutName = what you want the output directory to be called (using the sample name works well) \$SampleName = sample name provided to the sequencer; in fastq file name, e.g. SampleName_S1_L003_R1_001.fastq.gz \$SampleIndices = Set of four oligos, such as CAGTACTG,AGTAGTCT,GCAGTAGA,TTCCCGAC, OR a code like SI-GA-A2 Note that 10x Genomics provides oligo/code conversion files. 3' files are here:

https://support.10xgenomics.com/single-cell-gene-expression/index/doc/specifications-sample-index-sets-for-single-cell-3

Cellranger output files

B115.mri.tgz _invocation outs __sitecheck _vdrkill _cmdline _jobmode _perf __tags __vdrkill._truncated_ _filelist _log __perf._truncated_ _timestamp _versions _finalstate _mrosource SC_RNA_COUNTER_CS _uuid

analysis	filtered_feature_bc_matrix.h5				
clustering - flat file clustering results	metrics_summary.csv – flat file QC information				
diffexp – DEGs for each cluster	molecule_info.h5				
pca – details about each principal component,	possorted_genome_bam.bam				
projections, etc	possorted_genome_bam.bam.bai				
tsne – coordinates of each cell in t-SNE plot	raw_feature_bc_matrix – not filtered for cell-associated				
cloupe.cloupe – input to loupe browser for interactive	barcodes				
analysis	raw_feature_bc_matrix.h5 – not filtered for cell-associated				
filtered_feature_bc_matrix	barcodes				
barcodes.tsv.gz	web_summary.html – QC information and minimal				
features.tsv.gz	interactive analysis				
matrix.mtx.gz					

Did your experiment work?

Two key QC files:

- metrics_summary.csv
- web_summary.html

web_summary.html, metrics_summary.csv

Clustering Type: Grap

Chemistry

Cell Ranger Version

Mapping	
Reads Mapped to Genome	92.8%
Reads Mapped Confidently to Genome	70.3%
Reads Mapped Confidently to Intergenic Regions	17.8%
Reads Mapped Confidently to Intronic Regions	10.1%
Reads Mapped Confidently to Exonic Regions	44.7%
Reads Mapped Confidently to Transcriptome	26.1%
Reads Mapped Antisense to Gene	16.9%

Single Cell 5' PE

2.1.1

Top Genes By Cluster (Log2 fold-change, p-value)

		Clu	ister 1	Clu	ister 2	Clu	ister 3	Clu	ister 4	Clu	ister 5	Clu	ister 6	Clu	ster 7	Clus
Gene ID	Gene name	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC
		•														
ENSG00000180573	HIST1H2AC	0.56	1e+00	-1.02	5e-01	0.48	1e+00	0.82	6e-01	-0.89	4e-01	-0.66	1e+00	0.29	1e+00	0.25
ENSG00000125652	ALKBH7	0.54	1e+00	-0.01	1e+00	0.19	1e+00	-0.07	1e+00	-0.80	6e-01	-0.32	1e+00	0.09	1e+00	0.33
ENSG00000257698	RP11- 620J15.3	0.53	1e+00	-0.19	1e+00	0.01	1e+00	-0.00	1e+00	-0.23	1e+00	-0.36	1e+00	-0.01	1e+00	0.17
ENSG00000104894	CD37	0.48	1e+00	-0.27	1e+00	0.47	1e+00	0.26	1e+00	-0.74	6e-01	-0.43	1e+00	0.14	1e+00	0.22
ENSG00000150782	IL18	0.46	1e+00	-0.51	1e+00	0.86	9e-01	0.44	8e-01	-0.64	8e-01	-0.43	1e+00	0.02	1e+00	-0.49
ENSG00000267453	AC004791.2	0.46	1e+00	0.29	1e+00	-0.61	1e+00	-0.19	1e+00	-0.36	1e+00	-0.04	1e+00	0.14	1e+00	-0.37
ENSG00000196531	NACA	0.45	1e+00	-0.02	1e+00	0.18	1e+00	0.05	1e+00	-0.67	7e-01	-0.16	1e+00	0.16	1e+00	0.00
ENSG0000095932	SMIM24	0.44	1e+00	0.12	1e+00	0.15	1e+00	-0.06	1e+00	-0.13	1e+00	-0.14	1e+00	-0.00	1e+00	-1.74
ENSG0000204628	GNB2L1	0.44	1e+00	0.10	1e+00	0.12	1e+00	-0.08	1e+00	-0.51	9e-01	-0.21	1e+00	0.01	1e+00	-0.05
ENSG00000145708	CRHBP	0.43	1e+00	-0.26	1e+00	0.36	1e+00	0.52	8e-01	-0.55	9e-01	-0.04	1e+00	0.47	1e+00	-2.77
ENSG0000095917	TPSD1	0.42	1e+00	-0.53	1e+00	-1.03	1e+00	0.41	9e-01	-0.55	9e-01	0.06	1e+00	0.91	1e+00	0.41
ENSG00000105373	GLTSCR2	0.41	1e+00	0.06	1e+00	0.12	1e+00	-0.00	1e+00	-0.41	1e+00	-0.26	1e+00	-0.20	1e+00	-0.04
ENSG00000104408	EIF3E	0.40	1e+00	0.05	1e+00	0.23	1e+00	0.09	1e+00	-0.61	8e-01	-0.13	1e+00	0.02	1e+00	-0.15
ENSG00000263961	C1orf186	0.40	1e+00	-0.08	1e+00	0.40	1e+00	0.35	9e-01	-0.67	7e-01	-0.08	1e+00	0.25	1e+00	-1.46
ENSG00000170891	CYTL1	0.40	1e+00	-0.18	1e+00	0.86	9e-01	0.22	1e+00	-0.47	1e+00	-0.49	1e+00	0.13	1e+00	-1.12
ENSG00000269893	SNHG8	0.39	1e+00	0.18	1e+00	0.09	1e+00	-0.09	1e+00	-0.59	9e-01	-0.09	1e+00	0.17	1e+00	-0.33
	Seq	uencing	Saturatio	on			?				N	Nedian	Genes pe	er Cell		
1	1											1		1		

0.8

Values from some real experiments

Metric	Human – Cryo. Bone Marrow	Human – Fresh Cell lines	Mouse – Cryo. Bone Marrow				
Estimated Cells	7000	8500	5000				
Target Reads/Cell	50K (expression), 200K (variants)						
Median Genes/Cell	2000	5600	2100				
% Transcriptome mapping	>50%*	70	>70%				
% Antisense Reads	~3%	~5	~3%				
Fraction reads in cells 80-90%		80-90%	80-90%				
Total Genes Detected	20,000	25,000	16,500				
Median UMIs/Cell 5000-6000		25000	7000-8000				

Possible reasons for low quality

Metric	Human
Estimated Cells	Low viability, lysed cells
Target Reads/Cell	Rarely problematic
% Transcriptome mapping	Wrong transcriptome, low sequence quality
% Antisense Reads	Wrong chemistry, low sequence quality
Fraction reads in cells	Lysed cells, extracellular RNA

Exploring the data using the loupe browser Wild-type mouse (WT) compared to Knock-out (KO) mouse (2 replicates each)

Import a custom list of marker genes for multiple cell types

Examine some genes and gene sets...

Import a custom list of inferred cell types*

*These cell types were inferred using an in-house nearest-neighbor algorithm and the Haemopedia database. The SingleR package is similar.

Compare two clusters using a differential expression analysis

- 1. Select Categories...
- 2. Select Graph-Based...
- 3. Click the three vertical dots to access the "Hide All Clusters" option
- 4. Then click two clusters of your choice
- 5. In the Significant Feature Comparison panel, click "Locally distinguishing," then press calculator icon

Define complex filters to select cells based on expression, cluster membership

Exercises

- 1. There are some significant differences in cell type composition between the WT and KO strains. What are they?
- 2. There are four clusters of macrophages in this data set. One cluster is missing from the KO mouse. Find this cluster, and generate a heatmap of genes that are differentially expressed across those four clusters. How is the "missing" cluster different from the others in terms of gene expression?

We are on a Coffee Break & Networking Session

Workshop Sponsors:

Genomics

Module