
1 bioinformatics.ca

Canadian Bioinformatics Workshops
www.bioinformatics.ca

bioinformaticsdotca.github.io

Supported by

2 bioinformatics.ca

3 bioinformatics.ca

single-cell RNA-sequencing
Allegra Petti

Informatics for RNA-seq Analysis
June 17-19, 2020

Workshop icon

4 bioinformatics.ca

Learning Objectives for Part II: Analysis
of the gene-barcode matrix

• By the end of this lecture, you will:
• Understand the rationale underlying downstream scRNAseq analysis

steps
• Understand how to assess (and improve) the quality of scRNAseq

data
• Understand to interpret scRNA-seq data from a biological standpoint
• Learn how to perform custom analyses of scRNAseq data using R
• Implement a complete gene-barcode matrix analysis pipeline in R

5 bioinformatics.ca

Analysis of the gene-barcode matrix

Governed by two overarching principles:

1. Single-cell RNA-seq data is very high-dimensional

2. And very sparse. Fraction of transcripts captured per cell:
10x V2: 14-15%
10x V3: 30-32%

6 bioinformatics.ca

Methods Galore
Number of single cell tools ~ Number of single cell studies ~ 500 (https://www.scrna-tools.org/)

Point and Click:
Loupe Browser
Partek Flow ($$$)
Flow-Jo ($$$)

General-purpose:
Seurat V3
Monocle V3
scran
LIGER (NMF)
CellHarmony
scAlign
Scanorama

Cell type assignment:
SingleR
Cellassign
CellHarmony
Moana
Garnet

Pseudotemporal Ordering:
Monocle 3 (R)
Slingshot (R)
PAGA (Python)
pCreode (Python)

Mutation Detection:
CONICSmat (CNV)
HoneyBadger (CNV, LOH)
cb_sniffer (SNVs, Indels)
Vartrix (SNVs, Indels)

Large data sets:
scSVA
SAUCIE

Predicting the future:
RNAvelocity
scVelo

→ Need thoughtful, creative application of existing tools to extract new biology

https://www.scrna-tools.org/

7 bioinformatics.ca

Analysis of the gene-by-cell matrix: Overview
Bold type indicates functionality not available in cellranger

• For multiple samples, optionally subsample to achieve comparable
sequencing depth using ‘cellranger aggr’ function

• Read in data and perform initial gene and cell filtering:
• Retain genes present in >= x cells
• Retain cells containing >= y genes

• Merge samples if not done in cellranger

• Batch correction, if necessary (cellranger does not do this properly)

• Data quality overview for subsequent filtering
• Plot distribution of Genes/cell, UMIs/cell, mitochondrial

percentage per cell, ribosomal percentage per cell

• Secondary cell filtering (depends on data set, questions):
• Genes and/or UMIs
• Mitochondrial transcript %
• Ribosomal transcript %

• Calculate G1/S and G2/M scores for each cell

• Identify variable genes, normalize, then scale the data (or use the one-
step alternative, SCTransform)

• Remove unwanted sources of variation
• Cell cycle (total cell cycle, not “Cell cycle difference”)
• Mitochondrial percentage
• Ribosomal percentage
• Cell cycle
• Combinations of these variables

• Principal Component Analysis (PCA) on variable genes

• Retain and plot key information about each principal component (PC):
• Percentage of standard deviation explained
• P-value (obtained from bootstrapping “Jackstraw”)
• Plot gene expression heatmaps for each of the top ~12 principal

components

• Choose Principal Components:
• Purpose: choose relative importance of minor expression signatures
• Discontinuity in elbow plot (of standard deviation explained by each PC)
• All PCs that explain >= 2% of SD
• P-value from JackStraw analysis < 1x10-100
• Clarity of PC heatmaps

• Compute t-SNE and UMAP layouts on n Principal Components (NB: not raw data)
• Single samples: 5-10
• Multiple samples: 20-50
• Cellranger default: 10
• Partek default: 50

• Clustering
• A tool for finding patterns in the data
• Graph-based (unsupervised, must specify resolution (0.7))
• Alternative: k-means (supervised, must specify k)

• Characterizing Clusters in terms of individual genes
• Differentially expressed genes (numerous methods)
• PC-perspective

• Choose genes that contribute heavily to top principal components
• Plot heatmaps of these genes in each cluster
• Independent of clustering
• Shows relationships of clusters to each other

• Cell type inference

8 bioinformatics.ca

• R package (R3.5+) containing functions and data structures for single-cell data, including scRNA-seq,
scATAC-seq, CITE-seq, etc.

• Useful references:
• https://satijalab.org/seurat/
• Basic workflow and command list: https://satijalab.org/seurat/essential_commands.html
• Tutorial on newest pipeline (using SCTransform): https://satijalab.org/seurat/v3.1/sctransform_vignette.html
• Older pipeline: https://satijalab.org/seurat/v3.1/multimodal_vignette.html
• Details on getting information and data into and out of the Seurat object: https://github.com/satijalab/seurat/wiki

• Key terms:
• Features = Genes (and/or proteins if using CITE-seq)
• Counts = UMIs
• Barcodes = Cells

https://satijalab.org/seurat/
https://satijalab.org/seurat/essential_commands.html
https://satijalab.org/seurat/v3.1/sctransform_vignette.html
https://satijalab.org/seurat/v3.1/multimodal_vignette.html
https://github.com/satijalab/seurat/wiki

9 bioinformatics.ca

Getting Help on R (and Seurat) functions

1. In R terminal, type:
?FunctionName
example: ?FindAllMarkers

2. Code available on github, e.g.:
https://github.com/satijalab/seurat/blob/master/man/FindClusters.Rd

https://github.com/satijalab/seurat/blob/master/man/FindClusters.Rd

10 bioinformatics.ca

Seurat V3 workflow overview
(for a single sample or pre-integrated samples)

Seurat functions in boldface blue font

scrna.counts <- Read10X(data.dir = "/path/to/SampleID/outs/filtered_feature_bc_matrix")

scrna <- CreateSeuratObject(counts = scrna.counts)

scrna <- NormalizeData(object = scrna)

scrna <- FindVariableFeatures(object = scrna)

scrna <- ScaleData(object = scrna)

scrna <- RunPCA(object = scrna) # Principal Component Analysis

scrna <- FindNeighbors(object = scrna) # build K-Nearest Neighbor network

scrna <- FindClusters(object = scrna) # cluster the data

scrna <- RunTSNE(object = scrna)

scrna <- RunUMAP(object = scrna)

DimPlot(object = scrna, reduction = "tsne")

UMAPPlot(object = scrna)

picky

11 bioinformatics.ca

Read data, create a Seurat object, and perform initial filtering

scrna.counts <- Read10X(data.dir = "/yourpath/outs/filtered_feature_bc_matrix")

scrna <- CreateSeuratObject(counts = scrna.counts, min.cells = 10, min.features = 100, pro
ject = Project1)

picky

Purpose: eliminate genes with essentially no expression, and cells with very few genes

Caution!
• Rare genes may be expressed in only a few cells
• Different cell types have different numbers of genes. Example: Red blood cells express

only ~200 genes in some 10x data sets.
• Don’t filter out potentially important cells.
• Consider cell-type-specific filtering thresholds

12 bioinformatics.ca

Multiplexed version: Combining multiple samples in Seurat
Purpose: Read, filter, and merge an arbitrary number of samples into a single Seurat object

matrix.dirs is a list of directories containing 10x data

data.10x = list(); # declare a list of 10x data objects

for (i in 1:nsamples) { # nsamples = number of samples
data.10x[[i]] <- Read10X(data.dir = matrix.dirs[i]);

}

scrna.list = list(); # a list of Seurat objects

for (i in 1:length(data.10x)) {
scrna.list[[i]] = CreateSeuratObject(counts = data.10x[[i]], min.cells=10, min.feat

ures=100, project = “Project1”);
scrna.list[[i]][["Sample"]] = samples[i]; # optional: assign a sample name from a v

ector ‘samples’, e.g. samples = c(“A”,”B”,”C”)

}
scrna <- merge(x=scrna.list[[1]], y=c(scrna.list[[2]],scrna.list[[3]]), add.cell.ids = c
(”name1",”name2",”name3”…)) # create merged Seurat object

13 bioinformatics.ca

Alternative: Combining multiple samples in cellranger
cellranger downsamples the data sets to the same [lowest] sequencing depth

cellranger aggr --id=$AggOutName --csv=$af --normalize=mapped --mempercore=64"

Aggregation file format:
library_id,molecule_h5
Name1,/PathToData/Name1/outs/molecule_info.h5
Name2,/PathToData/Name2/outs/molecule_info.h5

Definitions:
$AggOutName = Name of the output directory for the aggregated samples
$af = Full path to aggregation file, e.g. /path/to/aggregationfile.csv

14 bioinformatics.ca

Batch correct/integrate instead of merging (optional)

Avoid batch correction unless absolutely
necessary

When to use it:

• Correct for different technologies (e.g. 3’ and 5’)
• Correct for known different batches
• Discover conserved biology by finding

corresponding cells across different data sets
• Combining data of different types (e.g. scRNA-

seq, ATAC-seq)

15 bioinformatics.ca

Batch correct/integrate instead of merging (cont’d)
matrix.dirs is a list of directories containing 10x data

data.10x = list(); # declare list of 10x data sets

for (i in 1:length(matrix.dirs.)) { # for each data set

data.10x[[i]] <- Read10X(data.dir = matrix.dirs[i]); # add it to the list

}

scrna.list = list(); # declare list of Seurat objects

for (i in 1:length(data.10x)) { # for each data set…

scrna.list[[i]] = CreateSeuratObject(counts = data.10x[[i]], min.cells=10, min.features=100,project
=batch[i]); # …create a Seurat object for each data set

scrna.list[[i]][["Batch"]] = batch[i]; # assign a batch label from ‘batch’

scrna.list[[i]][["Sample"]] = samples[i]; # assign a sample name from ‘samples’

}

Not shown: Filter each sample separately and normalize (using same method for all samples)

anchors <- FindIntegrationAnchors(object.list = scrna.list, dims = 1:30) # find anchors

scrna.int <- IntegrateData(anchorset = anchors, dims = 1:30) # Integrate data

DefaultAssay(object = scrna.int) <- "integrated” # make integrated data the default for downstream anal
yses

16 bioinformatics.ca

Batch correction and integration: The fine print

• Integrated values not intended for use with differential expression calculations.

• We recommend running your differential expression tests on the “unintegrated” data.
By default this is stored in the “RNA” Assay. There are several reasons for this.

• The integration procedure inherently introduces dependencies between data points.
This violates the assumptions of the statistical tests used for differential expression.

• SCTransformed data requires a different batch-correction workflow. (DE is not supported
yet). See https://satijalab.org/seurat/v3.0/integration.html

• TransferData function uses data integration to classify cells based on a reference data set.

• Cellranger does faux batch-correction (corrected values are discarded), but batch-corrected
tSNE can be visualized in the loupe browser.

https://satijalab.org/seurat/v3.0/integration.html

17 bioinformatics.ca

Plot key parameters (per sample) to choose filtering cutoffs

• Goals of Plotting and Filtering:
• Eliminate apoptosing or leaky cells (high percentage of mitochondrial transcripts)
• Eliminate free-floating transcripts or under-sequenced cells (too few UMIs or genes per

cell)
• Eliminate doublets (too many UMIs or genes per cell)
• Know what’s in your data

• Is it dominated by a few genes?
• Is it dominated by ribosomal protein-encoding genes?
• How heterogeneous are the cells?
• Does the data suggest that the sample preparation protocol need to be adjusted?

18 bioinformatics.ca

Properties of the data influence interpretation and analysis
Key variables have wide ranges, multimodal distributions

0.000

0.005

0.010

0.015

0 100 200 300 400 500
Number of cells expressing a given gene

Pr
ob

. D
en

si
ty

 (R
el

at
ive

 N
o.

 o
f G

en
es

)

0.00

0.01

0.02

0.03

0 25 50 75
% Ribosomal Transcripts

Pr
ob

. D
en

si
ty

 (R
el

at
ive

 N
o.

 o
f C

el
ls

)

0.00000

0.00005

0.00010

0.00015

0 20000 40000 60000
UMIs per cell

Pr
ob

. D
en

si
ty

 (R
el

at
ive

 N
o.

 o
f C

el
ls

)

Most genes measured in a few cells! Distribution of UMIs/cell Distribution of Ribosomal transcripts/cell

0e+00

2e−04

4e−04

6e−04

2000 4000 6000
Number of expressed genes

Pr
ob

. D
en

si
ty

 (R
el

at
ive

 N
o.

 o
f C

el
ls

)

0.00

0.01

0.02

0.03

0.04

0 20 40
% Housekeeping Transcripts

Pr
ob

. D
en

si
ty

 (R
el

at
ive

 N
o.

 o
f C

el
ls

)

0.0

0.1

0.2

0.3

0 10 20 30 40
% Mitochondrial Transcripts

Pr
ob

. D
en

si
ty

 (R
el

at
ive

 N
o.

 o
f C

el
ls

)

Distribution of HK transcripts/cellDistribution of MC transcripts/cellMost cells: ~1200 genes/cell

not uniform!

different in
different cell types

…but ~20K
genes are

measured across
the sample

Results are
often driven by

oulier genes

19 bioinformatics.ca

Plot counts (UMIs) and features (genes) for every data set

Very heterogeneous, filter separately

20 bioinformatics.ca

Plot Mitochondrial and Ribosomal Protein content for every data set

• High MC content implies cellular damage (resulting in loss of cytoplasmic transcripts) or impending apoptosis
• Ilicic, et al. Classification of low quality cells from single-cell RNA-seq data. (2016) Genome Biology 17:29
• Marquez-Jurado et al. Mitochondrial levels determine variability in cell death by modulating apoptotic gene

expression. (2018) Nat. Comm. 9:389
• Ribosomal content: Reflects transcriptional diversity, cell type diversity, and probably proliferative potential. (I do not

recommend filtering for ribosomal content.)

21 bioinformatics.ca

Sample R and Seurat code for parameter plots

Calculate percentage of mitochondrial genes
mito.genes <- grep(pattern = "^MT-", x = rownames(x = scrna), value = TRUE);
percent.mito <- Matrix::colSums(x = GetAssayData(object = scrna, slot = 'counts')[mito.genes,]) /
Matrix::colSums(x = GetAssayData(object = scrna, slot = 'counts'));
scrna[['percent.mito']] <- percent.mito; # assign it to the meta data

ribosomal genes
ribo.genes <- grep(pattern = "^RP[SL][[:digit:]]", x = rownames(x = scrna), value = TRUE);
percent.ribo <- Matrix::colSums(x = GetAssayData(object = scrna, slot = 'counts')[ribo.genes,]) /
Matrix::colSums(x = GetAssayData(object = scrna, slot = 'counts'));
scrna[['percent.ribo']] <- percent.ribo; # assign it to the meta data

vln <- VlnPlot(object = scrna, features = c("percent.mito", "percent.ribo"), pt.size=0, ncol = 2,
group.by="Batch"); # make a violin plot, and color by batch or sample

vln <- VlnPlot(object = scrna, features = "nCount_RNA", pt.size=0, group.by="Batch", y.max=25000)

vln <- VlnPlot(object = scrna, features = "nFeature_RNA", pt.size=0, group.by="Batch")

NB: The number of genes and UMIs (nGene and nUMI) are automatically calculated for
every object by Seurat and stored in the meta data.

22 bioinformatics.ca

Some numbers
(50K reads/cell, 3’ V2 kit, cellranger V2, circa 2017)

Metric Sample1 Sample2 Sample3

gene.total 21342 21036 22377

gene.per.cell.mean 1499 1454 1751

gene.per.cell.med 1381 1438 1395

gene.per.cell.min 431 383 317

gene.per.cell.max 4447 4059 6435

gene.per.cell.sd 524 478 1052

cell.per.gene 168 123 123

umi.per.cell.mean 4186 4361 8412

umi.per.cell.med 3570 4144 5296

umi.per.cell.min 1655 1278 2143

umi.per.cell.max 21273 18114 70759

umi.per.cell.sd 2253 2049 8574

umi.per.gene.mean 1 1 1

umi.per.gene.max 1150 2397 17067

umi.per.gene.sd 2 2 5

The average gene is detected in ~150 cells

~30-50% of the reads are from transcripts
that encode ribosomal proteins

When detected, a gene is represented by
one read on average, but the range is huge!

23 bioinformatics.ca

Metric Sample1 Sample2 Sample3
Topgene % 48 56 57

Ribogene % 32 53 51

ribo.mean % 30 51 53

ribo.med % 29 53 56

ribo.min % 12 14 2

ribo.max % 68 73 86

ribo.sd % 8 8 17

mt.mean % 7 8 4

mt.med % 6 7 3

mt.min % 2 2 0

mt.max % 56 51 44

mt.sd % 2 4 2

hkgene % 22 35 34

hk.mean % 10 16 31

hk.med % 8 15 20

hk.min % 2 2 1

hk.max % 71 72 232

hk.sd % 7 9 31

More numbers (50K reads/cell, 3’ kit)

~50% of the reads come from just 100 genes

~30-50% of the reads are from transcripts
that encode ribosomal proteins

~20-40% of the reads are from housekeeping
genes, which are not uniformly expressed

24 bioinformatics.ca

Filter data

scrna <- subset(x = scrna, subset = nFeature_RNA > x & nUMI_RNA < y & percent.mito < z)

• Use violin plots and/or preliminary clustering results to choose
appropriate thresholds for your data.

• Some example thresholds:
• nFeature_RNA: between 500 and 4000, or between fixed

minimum and 95th percentile (for example)
• nFeature > x, nUMI < y percentile (based on predicted doublet

rate of 0.9% per 1000 cells)
• Mitochondrial content cutoff 5-10%, but is tissue-specific

• AML 10%
• 5% for mice, 10% for humans (Osorio and Cai. Systematic

determination of the mitochondrial proportion in human and
mice tissues for sin- gle-cell RNA sequencing data quality
control (2020) BioRxiv)

• Consider sample specific and/or cell-type specific thresholds

Mitochondrial proportion for scRNA-seq QC

Fig 1. Relationship between the total number of mitochondrial counts
and the library size. Each dot represents a cell, the continuous red line
represents the expectation and the dotted lines the lower and upper limit
of the confidence interval of the prediction computed using OLS regres-
sion.

Next, we accounted for outliers in the mitochondrial counts in relative to
the library size. This procedure has been shown to be critical to differen-
tiate apoptotic cells of pre-apoptotic and healthy cells in a supervised ex-
periment (Ordonez-Rueda et al. 2020). To do so, we used the OLS regres-
sion and computed the confidence interval of prediction between the mi-
tochondrial counts and the library size with data from all 5,013,314 cells.
We found that the relationship is noisy but positive and linear (𝑟 =
0.65, 𝑃 < 2.2 × 10−16) as displayed in Fig. 1. Following this procedure,
we identified 333,712 cells with mitochondrial counts above (𝑛  =
 178,671) or below (𝑛  =  155,041) the computed confidence interval
limits, which were also removed. After this step, 4,679,602 cells were re-
tained for the study.

Fig 2. Boxplots showing the differences in the mtDNA% between hu-
man and mice cells. Each dot represents a cell; the red line is the early
established 5% threshold.

With the cleaned dataset, we estimated that the mtDNA% per cell is

distributed between the minimum of 0.17% and the maximum of 14.64%,
considerably lower than the upper limit previously reported (up to 30% in
heart) using the bulk RNA-seq generated by the Illumina Body Tissue At-
las (Mercer, Neph et al. 2011). Next, we performed a comparison to eval-
uate whether there is a difference in the average mtDNA% cross different
species. The PanglaoDB database contains human and mouse datasets;
therefore, our comparison was between human and mouse. We performed
the Welch two-sample t-test and use the Wilcoxon-sum rank test to vali-
date the results. Both tests converged to the same conclusion, that is, the
average mtDNA% in human cells is significative higher than that in mice
cells (𝑃 < 2.2 × 10−16, in both cases) as is displayed in Fig. 2.

Fig 3. Boxplots showing the differences in the mtDNA% between hu-
man and mice cells by the technology used to generate the data. Each
dot represents a cell; the red line is the early established 5% threshold.

Then, we compared the mitochondrial content between human and

mouse data, stratified by the type of scRNA-seq technologies, by which
the data is obtained. These technologies include drop-seq, C1 Fluidigm
and 10x Genomics. Our results confirm our previous finding. In all cases
wherever data allowed, no matter which technology is used, the same pat-
tern was recovered. That is, Human cells have significantly larger
mtDNA% than mice cells (Fig. 3). Most importantly, for all cases where
mitochondrial content in humans were evaluated, the 75th percentile was
located above the threshold, suggesting that the early defined 5% is not
appropriate for human cells.

Fig 4. Boxplots of the mtDNA% across 44 human tissues. In parenthe-
sis, the number of cells in the stated tissue. Each dot represents a cell, the
red line is the stablished 5% threshold, blue line is the 10% threshold for
human cells proposed here.

Note that 91.3% (𝑛  =  4,271,613) of cells analyzed here were pro-

cessed using the 10x Genomics chromium system. Next, we decided to

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.20.958793doi: bioRxiv preprint

25 bioinformatics.ca

Example of possibly inadequate filtering

Metric Cutoff/threshold/range
Genes >700
UMI < 93 percentile
Mitochondrial % <10%

26 bioinformatics.ca

Calculate cell cycle phase of each cell

cell.cycle.tirosh <- read.table("CellCycleTirosh.txt", sep='\t', header=FALSE);

s.genes = cell.cycle.tirosh$V2[which(cell.cycle.tirosh$V1 == "G1/S")];

g2m.genes = cell.cycle.tirosh$V2[which(cell.cycle.tirosh$V1 == "G2/M")];

scrna <- CellCycleScoring(object=scrna, s.features=s.genes, g2m.features=g2m.genes, set.ident=FALSE)

• Purpose: Cell cycle signature can dominate tSNE/UMAP plots and may need to be
removed

• Seurat has a built-in function that calculates relative expression level of G1/S and
G2/M genes defined in Tirosh et al 2016

27 bioinformatics.ca

Step 5: Normalize, scale, control for unwanted variation

• Goal: remove technical effects while preserving biological variation
• Main technical variable: sequencing depth of a cell = total UMI (nCounts)
• Even in the same experiment, different cells have very different sequencing depths
• Expression level of a gene in a cell is proportional to the sequencing depth of the cell,

unless the data is normalized to sequencing depth
• Older normalization approach(es) scale every gene in the cell by the same factor: the

sequencing depth
• NormalizeData:

• Divide by total counts in each cell
• Scale to fixed counts (default is 1x104 use 1x106 for CPM)
• Add 1
• natural log

• FindVariableFeatures: use a variance stabilizing transformation
• ScaleData: Optionally subtract mean, divide by standard deviation, remove unwanted

signal using multiple regression

28 bioinformatics.ca

Note on FindVariableFeatures

• vst: Variance-Stabilizing Transformation
• Standardize the expression of each gene so that its

variance matches the calculated expected variance
• Plot standardized variance vs log(mean) and

choose outliers
• Choose 2000-3000 outliers

0

10

20

30

40

50

1e−03 1e−01 1e+01
Average Expression

St
an

da
rd

ize
d

Va
ria

nc
e

Non−variable count: 18992
Variable count: 2000

29 bioinformatics.ca

Regularized negative binomial normalization
with the SCTransform function

• Variance stabilizing transformation used in
FindVariableFeatures affects different genes
differently

• Highly and lowly expressed genes (B, C) are
affected differently by scaling factor (D)

• Variance related to sequencing depth, and
traditional normalization unevenly changes
contribution of each gene to overall variance

• Solution: Use negative binomial regression
(with parameters derived from groups of genes
with similar expression) to remove impact of
sequencing depth. Seurat function
SCTransform.

Hafemeister and Satija. bioRxiv 2019

30 bioinformatics.ca

The fine print:

• scrna[["SCT"]]@scale.data contains the residuals (normalized values), and is used directly as input to PCA. To save memory, we store these values only for variable genes, by setting
the return.only.var.genes = TRUE by default in the SCTransform function call.
• To assist with visualization and interpretation, we also convert Pearson residuals back to ‘corrected’ UMI counts. You can interpret these as the UMI counts we would expect to
observe if all cells were sequenced to the same depth.
• The ‘corrected’ UMI counts are stored in scrna[["SCT"]]@counts. We store log-normalized versions of these corrected counts in pbmc[["SCT"]]@data, which are very helpful for
visualization.
• You can use the corrected log-normalized counts for differential expression and integration. However, in principle, it would be most optimal to perform these calculations directly on the
residuals (stored in the scale.data slot) themselves. This is not currently supported in Seurat v3, but will be soon.

Two approaches to normalization and scaling in Seurat:
I. Variance Stabilizing Transformation (with removal of cell cycle signal):

scrna <- NormalizeData(object = scrna, normalization.method = "LogNormalize", scale.factor
= 1e4) # feature counts divided by total, multiplied by scale factor, add 1, ln-transforme
d

scrna <- FindVariableFeatures(object = scrna, selection.method = 'vst', mean.cutoff = c(0.
1,8), dispersion.cutoff = c(1, Inf)) # designed to find ~2000 variable genes

scrna <- ScaleData(object = scrna, features = rownames(x = scrna), vars.to.regress = c("S.
Score","G2M.Score"), display.progress=FALSE) # center and regress out unwanted variation

II. SCTransform (with removal of cell cycle signal):

scrna <- SCTransform(scrna, vars.to.regress = c("S.Score", "G2M.Score"), verbose=FALSE)

31 bioinformatics.ca

Practical Exercise Steps 1-9

• https://rnabio.org/module-08-scrna/0008/02/01/scRNA/

We will return to the lecture during the saveRDS step at the end of step 9

https://rnabio.org/module-08-scrna/0008/02/01/scRNA/

32 bioinformatics.ca

Dimensionality reduction using PCA
Purpose: Approximate original data using fewer dimensions. Define new axes that capture
as much “information” as possible in as few dimensions as possible.
PCA = Principal Component Analysis (similar to SVD - Singular Value Decomposition)
Principal Axes, Eigen Decomposition: Euler (1751)…Cauchy (1829)
SVD: Eugenio Beltrami, 1873 (etc)
PCA: Karl Pearson, 1901
Computation: Gene Golub, Christian Reinsch, 1970
Gene Expression: Orly Alter, Patrick Brown, David Botstein, 2000 (PNAS 97 (18): 10101-10106)
Other applications: image processing, video games, math, statistics, computer science, machine learning, finance, etc.

Non-negative matrix factorization: Lee and Seung, 1999. (Nature 401 (6755): 788–791)
Similar to PCA, but axes are not mutually orthogonal, and clustering and factorization are coupled.

Projections
(embeddings)

Use Embeddings
function to extract

embeddings and work in
PCA space

weights (loadings)

33 bioinformatics.ca

Selecting PCs: Jackstraw analysis

0.0

0.1

0.2

0.3

0.000 0.025 0.050 0.075 0.100
Empirical

Th
eo

re
tic

al
 [r

un
if(

10
00

)]

PC: p−value
PC 1: 0
PC 2: 0
PC 3: 3.67e−252
PC 4: 2.99e−302
PC 5: 2.39e−262
PC 6: 1.31e−198
PC 7: 1.16e−265
PC 8: 9.99e−194
PC 9: 3.04e−142
PC 10: 6.38e−156
PC 11: 5.06e−119
PC 12: 1.21e−130
PC 13: 3.41e−167
PC 14: 9.19e−103
PC 15: 1.15e−104
PC 16: 1.07e−78
PC 17: 5.97e−102
PC 18: 1.51e−72
PC 19: 2.98e−99
PC 20: 2.34e−75

PC 21: 2.74e−87
PC 22: 3.87e−101
PC 23: 4.46e−74
PC 24: 1.5e−54
PC 25: 7.33e−39
PC 26: 6.97e−51
PC 27: 1.88e−29
PC 28: 2.51e−16
PC 29: 1.28e−30
PC 30: 1.47e−06
PC 31: 1.48e−16
PC 32: 2.22e−18
PC 33: 3.83e−13
PC 34: 6.45e−13
PC 35: 1.21e−15
PC 36: 1.47e−06
PC 37: 2.49e−06
PC 38: 2.05e−05
PC 39: 7.82e−09
PC 40: 7.14e−06

• Calculate statistical significance of each PC
• Randomly permute data
• Recalculate PCs of randomized data
• Compare “real” PCs to “random” PCs to derive significance

NB: jackstraw analysis is slow
scrna <- JackStraw(object = scrna, num.replicate = 100, dims=N) # specify N: 30, 50, etc
scrna <- ScoreJackStraw(object = scrna, dims = 1:50)
js <- JackStrawPlot(object = scrna, dims = 1:20) # make plot shown above
pc.pval <- scrna@reductions$pca@jackstraw@overall.p.values # get overall pvalues for each PC

Chung and Storey. Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics 2015

34 bioinformatics.ca

Selecting Principal Components

• Retain and plot key information about each principal component
(PC):

• Percentage of standard deviation explained
• P-value (obtained from bootstrapping “Jackstraw”)
• Plot gene expression heatmaps for each of the top ~12

principal components
• Choose Principal Components:

• Purpose: choose relative importance of minor expression
signatures

• Discontinuity in elbow plot
• All PCs that explain >= x% of SD (e.g. 2%)
• P-value from JackStraw analysis < 1x10-n (e.g. 1x10-100)
• Clarity of PC heatmaps

• Number of PCs:
• Single samples: 5-10
• Multiple samples: 20-50
• Cellranger default: 10
• Partek default: 50

5

10

5 10 15 20
PC

St
an

da
rd

 D
ev

ia
tio

n

Elbow plot:
Standard deviation explained by

each PC

All downstream calculations are done on PCs, not raw data

35 bioinformatics.ca

Minor components contain signal
that is not represented in t-

SNE/UMAP

PC Tradeoff: More components → more signal, more noise

36 bioinformatics.ca

Plotting using t-SNE/UMAP
t-SNE = t-distributed Stochastic Neighbor Embedding
UMAP = Uniform Manifold Approximation and Projection

Goal: Embed high-dimensional data in low-
dimensional space

End product: 2D plot where cells are positioned near each
other if they have similar gene expression profiles. “Units”
are relative and data-dependent.

• Expression “distances” between points (ie cells) in high-
dimensional space are modeled using a gaussian
distribution.

• Distances in low-D space are modeled using a t-
distribution.

• Operates in “PCA space”
• t-SNE preserves local structure only.
• UMAP preserves local AND global structure.
• Implication: In UMAP, distances between points and

clusters in UMAP are more interpretable in terms of
expression distances/similarity.

37 bioinformatics.ca

Plotting using t-SNE/UMAP

n = 10; # choose number of dimensions - experiment-specific!
scrna <- RunUMAP(object = scrna, reduction = "pca", dims = 1:n) # calculate UMAP
scrna <- RunTSNE(object = scrna, reduction = "pca", dims = 1:n) # calculate tSNE

make some plots:
DimPlot(object = scrna, reduction = "tsne", group.by = ”Batch", pt.size=0.1) # color by
Batch

FeaturePlot(object = scrna, features = c("nCount_RNA"), reduction=“tsne”) # plot one or
more genes or variable on t-SNE

“How to use t-SNE effectively” https://distill.pub/2016/misread-tsne/

https://distill.pub/2016/misread-tsne/

38 bioinformatics.ca

Interpreting the t-SNE/UMAP, Part I: Potentially misleading sources of variation

39 bioinformatics.ca

FCER1G
VCAN
NCF1
FGL2
SERPINA1
PSAP
S100A6
SAMHD1
CYBB
FCN1
MPEG1
CD36
S100A11
DUSP6
FGR
MIR181A1HG
SPINK2
TWISTNB
RHEX
SELENOP
STMN1
TFDP2
HSH2D
FTO
IGLL1
SMIM24
CAT
AC084033.3
CDK6
MSI2

PC_1

CAT
CFD
DMXL2
EGR1
ATP8B4
ANKRD28
AC084033.3
CST3
CDK6
HSH2D
CSF3R
RGS18
AZU1
IGLL1
ARID1B
CCL5
GZMM
CD247
GNLY
CD2
CD3D
FGFBP2
GZMB
GZMH
PRF1
IFITM1
CST7
CD3E
GZMA
IL32

PC_2

CST7
IL32
GZMA
PRF1
GZMH
CD3E
FGFBP2
GZMB
GNLY
CD247
CD2
GZMM
CD3D
HOPX
CD3G
FCMR
LINC00926
LTB
CD79B
IGHD
CD19
LINC02397
BACH2
BLK
TCL1A
BANK1
FAM129C
IGHM
MS4A1
CD79A

PC_3

ZFP36L1
SELL
RHOB
CLEC7A
ALOX5
CD300E
C5AR1
SLC7A7
BCL2A1
MTSS1
FCGR3A
LILRB1
DUSP1
GLUL
MARCKSL1
TPX2
PCLAF
UBE2C
BIRC5
CDK1
MT1E
SLC44A1
AZU1
RNASE2
CCL23
CTSG
TYMS
CLEC11A
MKI67
TOP2A

PC_4

TOP2A
MKI67
UBE2C
CDK1
BIRC5
TPX2
RRM2
GTSE1
TYMS
ASPM
AURKB
PCLAF
NCAPG
CENPF
HJURP
SLC44A1
FOSL2
SERPINB2
PLD3
TP53INP2
ADAM8
LINC00482
CTSD
RNASE6
SERPINB10
RFLNB
RNASE2
ALOX5AP
EMB
AZU1

PC_5

CNRIP1
GATA1
TAL1
AC123912.4
RHAG
FCER1A
FADS2
ISOC1
SLC27A6
SLC40A1
SPTA1
ITGA2B
C2orf88
MYL4
PRKAR2B
RASGRP3
DEFB1
TRGC2
NCOA7
CAT
CTSG
C1QTNF4
ELANE
KLF2
AZU1
XBP1
MPO
EGR1
SPINK2
CFD

PC_6

CR1
S100A12
UBE2C
MKI67
AC245128.3
PLBD1
CKAP4
SELL
GTSE1
ASPM
CDK1
TOP2A
SLC2A3
AURKB
TPX2
GPBAR1
MT1X
FCER1A
PKIB
FCGR3A
CST3
PLD4
MT1G
CLEC11A
HLA−DQA1
MT2A
HLA−DRB1
HLA−DPB1
HLA−DRB5
HLA−DPA1

PC_7

IKZF2
AC111000.4
ZNF385D
MLLT11
HDC
LINC00891
DBN1
NMT2
ISOC1
GIMAP7
LRRN1
S100A12
CD14
BCKDHB
CHN1
ITGA2B
ANKRD28
CXCL3
NCOA7
TSC22D3
CXCL2
JUN
RHAG
ATP2B1−AS1
CD69
RHOB
KLF6
IER2
KLF2
EGR1

PC_8

RHAG
GATA1
C2orf88
ITGA2B
FADS2
CFD
TAL1
MYL4
MPO
HBD
GMPR
CFH
NPL
CAV2
MMRN1
CD9
HLA−DPB1
PLD4
AC004687.1
ADAM28
CAVIN3
LGALS2
HLA−DQA2
MARCKSL1
ITGA4
IKZF2
TUBA1A
HLA−DQA1
ITGB7
PKIB

PC_9

FCGR3A
RHOC
MTSS1
LILRA5
CDKN1C
LSP1
PRAM1
HELLS
MCM6
LRRK2
ECE1
MCM4
OLIG1
UHRF1
LILRB1
IRF7
IFI6
RSAD2
HERC5
OAS2
IFIT2
ISG15
IFIT3
XAF1
IFI44
IFIT1
EPSTI1
OAS3
IFI44L
MX1

PC_10

FOSB
JUN
DUSP1
ATP2B1−AS1
NR4A2
KLF4
AC007952.4
SESN3
TP53INP2
RHOB
AC020916.1
NAMPT
KLF2
FCGR3A
IER2
EGFL7
PRKAR2B
PPA1
TPM4
C1QTNF4
CD52
SELL
LSP1
CAVIN3
PKIB
SPINK2
ITGB7
CD9
CRIP1
LGALS2

PC_11

HELLS
PCNA
MCM4
MCM6
UHRF1
TYMS
CLSPN
DHFR
TK1
PCLAF
TMEM106C
PKMYT1
CHAF1B
LIG1
OLIG1
MYBL2
CDCA8
CEP55
TPX2
CCNB2
TOP2A
MKI67
GTSE1
CENPF
CENPE
HMMR
UBE2C
DLGAP5
ASPM
CDC20
PLK1

PC_12

Interpreting the t-SNE/UMAP, Part II: Systematic analysis of variation
• What is driving the t-SNE/UMAP layout?
• Find genes that vary:

• Principal components
• Individual cluster-specific genes

• Examine across clusters/t-SNE/UMAP

DimHeatmap(object = scrna, dims = 1, cells = 500, balanced = TRUE)

40 bioinformatics.ca

Part II, cont’d: Visualizing sources of variation

PC #1
captures
the biggest
source of
variation

Small but distinct cell clusters may
contribute heavily to the layout (may
need to be removed)

41 bioinformatics.ca

Post-PCA analysis of the gene x cell matrix

• Compute t-SNE and UMAP layouts on n Principal Components (NB: not raw data)
• Clustering

• A tool for finding patterns in the data
• Graph-based (unsupervised, must specify resolution (0.7))
• Alternative: k-means (supervised, must specify k)

• Characterizing Clusters in terms of individual genes
• Differentially expressed genes (numerous methods)
• PC-perspective

• Choose genes that contribute heavily to top principal components
• Plot heatmaps of these genes in each cluster
• Independent of clustering
• Shows relationships of clusters to each other

• Cell lineage inference

42 bioinformatics.ca

2-D layout vs. Clustering

• tSNE and UMAP reflects natural organization of data by approximating high-dimensional
relationships in low-dimensional space

• Clustering imposes structure by assigning cells to non-overlapping groups based on
relative expression similarity

43 bioinformatics.ca

Clustering [Cells]

Common methods:
• Graph-based: Unsupervised, but “adjustable” using ”resolution” parameter

• Calculates k-nearest neighbors for each cell using Euclidian distance in PCA-space;
constructs shared nearest-neighbor (SNN) graph; optimize graph modularity (Waltman
and van Eck algorithm)

• K-means: Supervised: specify number of clusters (available in cellranger, not Seurat).

• Clustering helps organize and identify patterns in data.
• There is no “correct” or “perfect” clustering of any data set.
• Corollary: Even the best clustering may be misleading (aka

“wrong”).
• Don’t take clusters too seriously – they don’t prove anything.

44 bioinformatics.ca

Clustering

nPC = 20; # specify number of PCs to use
cluster.res = 0.7; # specify resolution of clustering.
scrna <- FindNeighbors(object=scrna, dims=1:nPC);
scrna <- FindClusters(object=scrna, resolution=cluster.res);
scrna <- StashIdent(object = scrna, save.name = sprintf("ClusterNames_%.1f_%dPC",
cluster.res, nPC)) # save cluster names in a new identity (ClusterNames_0.7_20 in this
example) if desired

Step 1: Build KNN graph
using Euclidian diastnce in
PCA-space

Step 2: Find clusters, or
cliques, or modules using
Louvain modularity
optimization algorithm
(alternatives available)

45 bioinformatics.ca

Practical Exercise Steps 10-12

• https://rnabio.org/module-08-scrna/0008/02/01/scRNA/

We will return to the lecture during the clustering step (Step 12)

https://rnabio.org/module-08-scrna/0008/02/01/scRNA/

46 bioinformatics.ca

TSNE 1

TS
N

E
 2

1

2

7

10

8

11
6

9

4

3

5

12

13

16

14
18

15

17

Myeloid
progenitors

(mid)

Mpo
Elane
Ctsg
Prtn3

Myeloid
progenitors

(early)

Kit
Cd34
Flt3

RBC progenitors (#2)

Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Myeloid progenitors (late)

Ncf2
Fpr1
Ctss

T cells
Cd3d
Cd3e
Cd3g
Cd4
Cd8a

Cd8b1

RBC progenitors (#1)
Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Ly6a/Sca1

S100*
B cells

CD19

Myeloid
progenitors

(mid)

Mpo
Elane
Ctsg
Prtn3

Myeloid
progenitors

(early)

Kit
Cd34
Flt3

RBC progenitors (#2)

Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Myeloid progenitors (late)

Ncf2
Fpr1
Ctss

T cells
Cd3d
Cd3e
Cd3g
Cd4

Cd8a
Cd8b1

RBC progenitors (#1)
Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Ly6a/Sca1

S100*
B cells

CD19
Myeloid

progenitors
(mid)

Mpo
Elane
Ctsg
Prtn3

Myeloid
progenitors

(early)

Kit
Cd34
Flt3

RBC progenitors (#2)

Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Myeloid progenitors (late)

Ncf2
Fpr1
Ctss

T cells
Cd3d
Cd3e
Cd3g
Cd4
Cd8a
Cd8b1

RBC progenitors (#1)
Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Ly6a/Sca1

S100*
B cells

CD19

Myeloid
progenitors

(mid)

Mpo
Elane
Ctsg
Prtn3

Myeloid
progenitors

(early)

Kit
Cd34
Flt3

RBC progenitors (#2)

Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Myeloid progenitors (late)

Ncf2
Fpr1
Ctss

T cells
Cd3d
Cd3e
Cd3g
Cd4
Cd8a
Cd8b1

RBC progenitors (#1)
Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Ly6a/Sca1

S100*
B cells

CD19

Myeloid
progenitors

(mid)

Mpo
Elane
Ctsg
Prtn3

Myeloid
progenitors

(early)

Kit
Cd34
Flt3

RBC progenitors (#2)

Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Myeloid progenitors (late)

Ncf2
Fpr1
Ctss

T cells
Cd3d
Cd3e
Cd3g
Cd4
Cd8a

Cd8b1

RBC progenitors (#1)
Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Ly6a/Sca1

S100*
B cells

CD19

Myeloid
progenitors

(mid)

Mpo
Elane
Ctsg
Prtn3

Myeloid
progenitors

(early)

Kit
Cd34
Flt3

RBC progenitors (#2)

Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Myeloid progenitors (late)

Ncf2
Fpr1
Ctss

T cells
Cd3d
Cd3e
Cd3g
Cd4

Cd8a
Cd8b1

RBC progenitors (#1)
Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Ly6a/Sca1

S100*
B cells

CD19Characterizing clusters using marker genes
Cells colored by graph-based cluster

Myeloid
progenitors

(mid)

Mpo
Elane
Ctsg
Prtn3

Myeloid
progenitors

(early)

Kit
Cd34
Flt3

RBC progenitors (#2)

Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Myeloid progenitors (late)

Ncf2
Fpr1
Ctss

T cells
Cd3d
Cd3e
Cd3g
Cd4
Cd8a

Cd8b1

RBC progenitors (#1)
Hba-a1
Hba-a2
Hba-x

Hbb-bh1
Hbb-bh2
Hbb-bs
Hbb-bt
Hbb-y

Ly6a/Sca1

S100*
B cells

CD19

Ly6g

Neutrophils

47 bioinformatics.ca

Characterizing clusters using differential gene expression

• Data has zero-inflated negative binomial distribution (lots of zeros, overdispersed) so can’t use bulk methods
• Default in Seurat: Wilcoxon rank-sum test
• Nonparametric version of t-test
• For two clusters (A and B), and one gene, rank each cell in each cluster according to expression
• Determine whether sum-of-ranks for cluster A is significantly different than sum-of-ranks for cluster B
• Clear explanation of Wilcoxon rank-sum test: http://statweb.stanford.edu/~susan/courses/s141/hononpara.pdf
• Numerous other tests in Seurat and other packages

A

B

C

http://statweb.stanford.edu/~susan/courses/s141/hononpara.pdf

48 bioinformatics.ca

Characterizing clusters using differential gene expression

DEGs <- FindAllMarkers(object=scrna); # Compare each clusters to all other cells.
output is a matrix.
de.markers <- FindMarkers(scrna, ident.1 = ”1", ident.2 = ”2") # compare identity
1 to identity 2
NB: May first need to set default identities, e.g.:
Idents(object = scrna) <- ”seurat_clusters”; # sets the default identity to
Seurat_clusters

Do the DEGs make sense? Plot them
FeaturePlot(object = scrna, features = ‘CD34’)
Prettier version:
FeaturePlot(object = scrna, features = genesToPlot, cols = c("gray","red"),
ncol=2, reduction = "umap") +
theme(axis.title.x=element_blank(),axis.title.y=element_blank(),axis.text.x=eleme
nt_blank(),axis.text.y=element_blank(),axis.ticks.x=element_blank(),axis.ticks.y=
element_blank())

49 bioinformatics.ca

Characterizing clusters using principle components

0
1

10

11

12

13

14
15

16 17

18 2
3

4

5

6

78

9

−25

0

25

50

−50 −25 0 25 50
tSNE_1

tS
N
E_
2

0

1

10

11

12

13

14

15

16

17

18

2

3

4

5

6

7

8

9

Red blood cell
differentiation

Granulocyte,
neutrophil
migration

Myeloid
differentiation

CD4+
T-cells

B-cells,
MHC Class II

Cell cycle

Scaled
expression

-1 10 10
5
12
15
18
2
14
8
3
11
7
17
9
16
6
4
13
0
1

CD8+ T-cells

• Cluster-specific DEGs are problematic: require “perfect” clusters,
oversimplify, can miss signal, too stringent for the data.

• Instead, visualize principle components across clusters to view
relationships among clusters

• Choose most highly-weighted genes in the top principal components
• Calculate average expression of each gene in each cluster
• Use hierarchical clustering to cluster the clusters based on these genes

50 bioinformatics.ca

Characterizing samples using
principle components

51 bioinformatics.ca

Characterizing gene expression changes with respect to pseudotime
(Monocle2 vs Monocle3, Slingshot)

1

−4

−2

0

2

−20 −10 0 10
Component 1

C
om

po
ne

nt
 2

cluster

0

1

10

11

12

13

2

3

4

5

6

7

8

9

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●●

●
●
●

●

●

●

●

●
●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●●●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

9

3
5

10

7

6

11

13

8

2

1

4

12

14

−10

0

10

−40 −30 −20 −10 0 10
UMAP 1

U
M

AP
 2

52 bioinformatics.ca

Characterizing gene expression changes with respect to pseudotime
(Monocle)

53 bioinformatics.ca

Mutation detection in scRNA-seq data

CEBPA R142fs
WT

NRAS G12D
WT

TP53 E286G
WT

Non-AML

TP53
NRAS

CEBPA
NF1

Clonality

809653
M0
36% Blasts

Founding clone
=> AML clusters*

Independent subclones, overlapping
signatures

*AML clusters: significantly enriched for somatic mutations (Fisher exact test)

CNV

CNVs mark AML
clusters

• vartrix
• cb_sniffer
• CONICSmat (CNV only)
• HoneyBADGER (CNV, LOH)

• scRNAseqMutations clarify scRNA-seq data interpretation by marking tumor cell clusters

54 bioinformatics.ca

Return to the exercise to
complete steps 12-14
• https://rnabio.org/module-08-
scrna/0008/02/01/scRNA/

https://rnabio.org/module-08-scrna/0008/02/01/scRNA/

55 bioinformatics.ca

Part III:
Useful Seurat functions for future reference

56 bioinformatics.ca

Seurat object: meta data
Meta data (scrna@meta.data) contains:

summary statistics
sample name
cluster membership for each cell
cell cycle phase for each cell
batch or sample for each cell
other custom labels for each cell

Access using:
scrna[[]]
scrna@meta.data
str(scrna@meta.data)

Combine with R commands such as head and str, e.g. str(scrna[[]])
Example: Access number of genes (“Features”) for each cell:

head(scrna@meta.data$nFeature_RNA)
Example: Access number of UMIs for each cell:

head(scrna@meta.data$nCount_RNA)
What are the items in the current default cell identity class?
levels(x=scrna)
How many clusters are there?

length(unique(scrna@meta.data$seurat_clusters))
levels(x=scrna)

What batches are included in this data set?
unique(scrna@meta.data$Batch)
Can add meta data

http://meta.data
http://meta.data$nCount_RNA
http://meta.data$seurat_clusters)

57 bioinformatics.ca

• Assay data (i.e. RNA-seq measurements): e.g. ‘RNA’
• Assay = data type
• Each assay has multiple “slots” that hold the raw data (‘counts’), scaled data (‘scale.data’) or

normalized data (‘data)
• Data transformation, such as scaling and normalization, adds new ‘slots’ to the assay data
• Access values in the slots as follows:

• raw RNA counts: scrna[['RNA']]@counts[1:3,1:3]
• scaled data after SCTransform: scrna[['SCT']]@scale.data[1:3,1:3]
• corrected UMI count data after SCTransform: scrna[['SCT']]@counts[1:3,1:3]
• log-normalized data after SCTransform: scrna[['SCT']]@data[1:3,1:3]

• Alternatively, use the function GetAssayData:
• GetAssayData(object = scrna, slot = 'scale.data')[1:3, 1:3]
• GetAssayData(object = scrna, slot = 'counts')[1:3, 1:3]

• It’s often important to know what ‘slot’ a function is using. Sometimes you can change it.
• Dimensionality reduction data, e.g. PCA, tSNE, UMAP data

• Access using scrna[[‘pca’]], scrna[[‘tsne’]], scrna[[‘umap’]]

Seurat object: Assay data and Dimensionality reduction

58 bioinformatics.ca

Summary of common functions for the Seurat object

GetAssayData(object = scrna, slot = "counts")
GetAssayData(object = scrna, slot = "scale.data")
FetchData(object = scrna) # returns a data frame
colnames(x = scrna)
rownames(x = scrna)
VariableFeatures(object = scrna)
HVFInfo(object = scrna)
scrna[["assay.name"]] eg scrna[[“RNA”]]
scrna[["pca"]]
Embeddings(object = scrna, reduction = "pca")
Loadings(object = scrna, reduction = "pca")
scrna$name <- vector # assign a vector of identities
scrna$name # e.g. scrna$seurat_clusters
Idents(object = scrna) # get default cell identities
Idents(object = scrna) <- "new.idents” # change the identities
Idents(object = scrna, cells = 1:10) <- "new.idents” # change the identities for specific cells
scrna$saved.idents <- Idents(object = scrna) # change current identities for an existing identity class
levels(x = scrna) # get a list of the default identities (e.g. a list of clusters)
RenameIdents(object = scrna, "old.ident" = "new.ident") # change name of identity classes
WhichCells(object = scrna, idents = "ident.keep") # which cells are in cluster x?
WhichCells(object = scrna, idents = "ident.remove", invert = TRUE)
WhichCells(object = scrna, downsample = 500)
WhichCells(object = scrna, expression = name > low & name < high)
subset(x = scrna, cells = cellist, idents=‘keep’); # subset seurat object and return seurat object
subset(x = scrna, subset = name > low & name < high)
merge(x = object1, y = object2)

59 bioinformatics.ca

Additional ways to access data

Cells(scrna) # get list of cells

choose cells that have a given characteristic, here, that are in “sample1”:

subcells <- Cells(scrna)[(which(scrna[["Sample"]]$Sample == sample1))]

alternative approach, choosing cells in cluster 4:

Idents(object=scrna) <- "ClusterNames” # set default identity to ClusterNames

WhichCells(scrna,idents="4") # use WhichCells

extract raw expression matrix for all cells in cluster 4

as.matrix(GetAssayData(scrna, slot = "counts")[, WhichCells(scrna, ident = '4')])

FetchData # subset Seurat object and return a data frame

subset # subset Seurat object and return a Seurat object

levels(scrna) # reorder the columns in Do.Heatmap

Command(scrna) # lists the functions that were applied to the Seurat object

60 bioinformatics.ca

We are on a Coffee Break &
Networking Session

Workshop Sponsors:

Module

