

Cold Spring Harbor Laboratory

Advanced Sequencing Technologies & Applications


http://meetings.cshl.edu/courses.html

Cold RNA-Seq Module 5 Spring Isoform Discovery and Alternative Expression (tutorial)

Harbor Laboratory

Kelsy Cotto, Obi Griffith, Malachi Griffith, Alex Wagner, Jason Walker Advanced Sequencing Technologies & Applications November 6- 18, 2018

Learning Objectives of Tutorial

- Learn how to run StringTie in 'reference only', 'reference guided', and 'de novo' modes
- Learn how to use Cuffmerge to combine transcriptomes from multiple StringTie runs and compare assembled transcripts to known transcripts
- Learn how to perform differential splicing analysis with Ballgown
- Examine junctions counts with RegTools and StringTie alternative transcript files at the command line
- Visualize junction counts and StringTie assembled transcripts in IGV

5-i,ii. Running stringtie in 'ref-guided' and 'de-novo' mode

- In Module 3 we ran StringTie in 'ref-only' mode. This mode gives us an expression estimate for each known gene/transcript
- Now we want to be able to potentially identify novel genes, and novel isoforms of known genes
- To accomplish this we will re-run cufflinks in 'ref-guided' and 'de-novo' modes
 - In 'ref-guided' mode a known transcriptome will be used as a guide
 - In 'de-novo' mode no knowledge of the transcriptome will be used at all

Options that govern use of existing transcript information

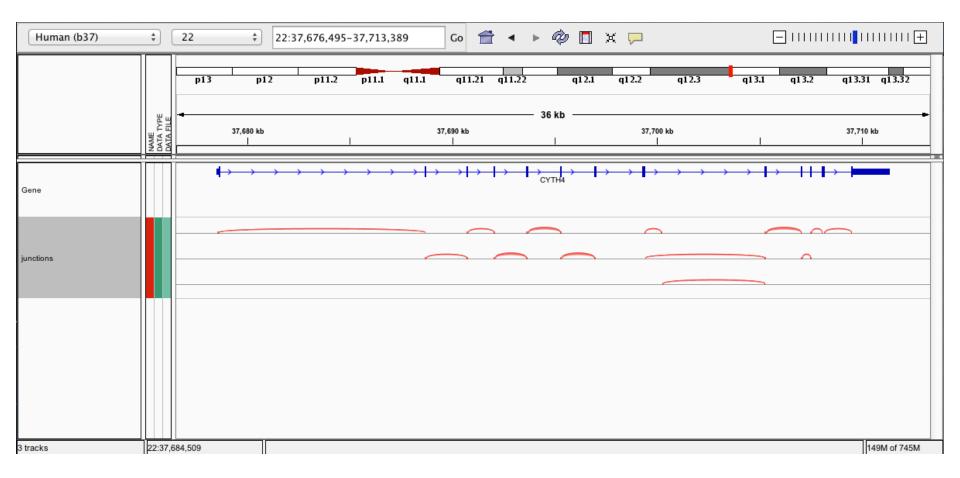
- During indexing of the genome with hisat2, transcript information is provided
 - A transcriptome GTF file is used to extract splice sites and exons
 - These are supplied during the index step to build a better index
 - These will be used to assist the alignment step by allowing alignment to both transcriptome and genome sequences
 - Coordinates from alignments to transcriptomes will be converted back to genome coordinates
 - Even though we supply transcriptome info, hisat2 will not be limited in to known transcripts or splice sites
- Stringtie '-G' option
 - Used to supply a transcriptome GTF file
 - If specified, uses the reference annotation file (in GTF or GFF3 format) to guide the assembly process. We call this the 'ref-guided' analysis mode
- Stringtie '-e' option
 - Limits the processing of read alignments to <u>only</u> estimate and output the assembled transcripts matching the reference transcripts given with the -G option

http://meetings.cshl.edu/

- We call this 'reference-only' analysis mode
- Running StringTie with neither '-G' or '-e'
 - We call this 'de-novo' analysis mode

RNA sequencing and analysis

A 'junctions.bed' file

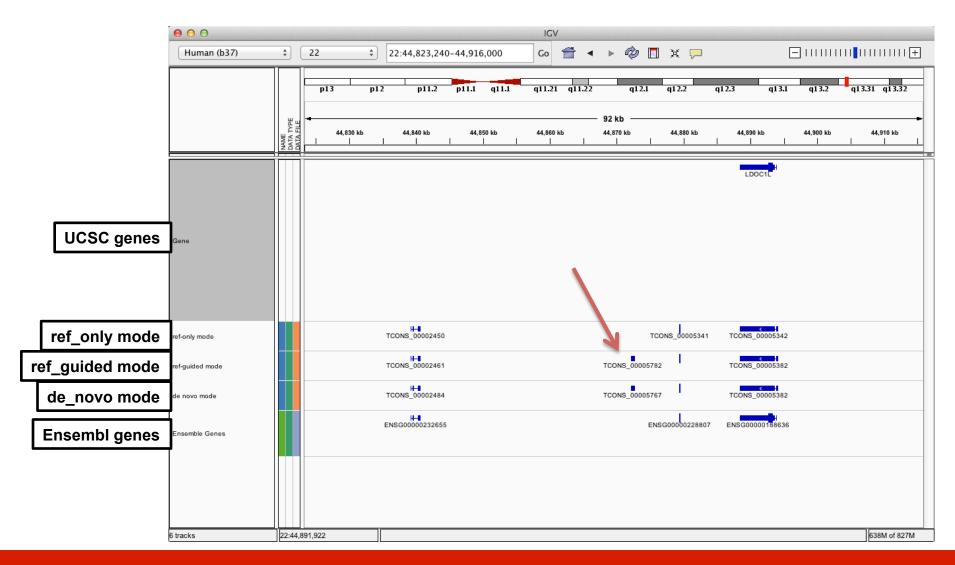

- After alignment, we can create a summary of all reads that support exon-exon junctions
 - e.g. exon1-exon2 has 5 reads
 - e.g. exon1-exon3 has 9 reads
- This file reports all of the unique exon-exon junctions observed and the read counts for each
 - In BED format

track name=junctions description="TopHat junctions"										
22	17062079	17063415	JUNC00000001	3	-	17062079	17063415	255,0,0 2	98,19	0,1317
22	17092740	17095057	JUNC00000002	5	+	17092740	17095057	255,0,0 2	43,91	0,2226
22	17117940	17119543	JUNC0000003	6	+	17117940	17119543	255,0,0 2	40,75	0,1528
22	17152466	17156100	JUNC00000004	3	-	17152466	17156100	255,0,0 2	12,88	0,3546
22	17525819	17528242	JUNC00000005	1	+	17525819	17528242	255,0,0 2	71,29	0,2394
22	17528261	17538007	JUNC00000006	1	+	17528261	17538007	255,0,0 2	55,45	0,9701
22	17566071	17577976	JUNC00000007	10	+	17566071	17577976	255,0,0 2	48,25	0,11880
22	17577951	17578785	JUNC00000008	24	+	17577951	17578785	255,0,0 2	25,99	0,735
22	17578093	17578710	JUNC00000009	1	+	17578093	17578710	255,0,0 2	76,24	0,593
					. .	_	_			

Junction read count

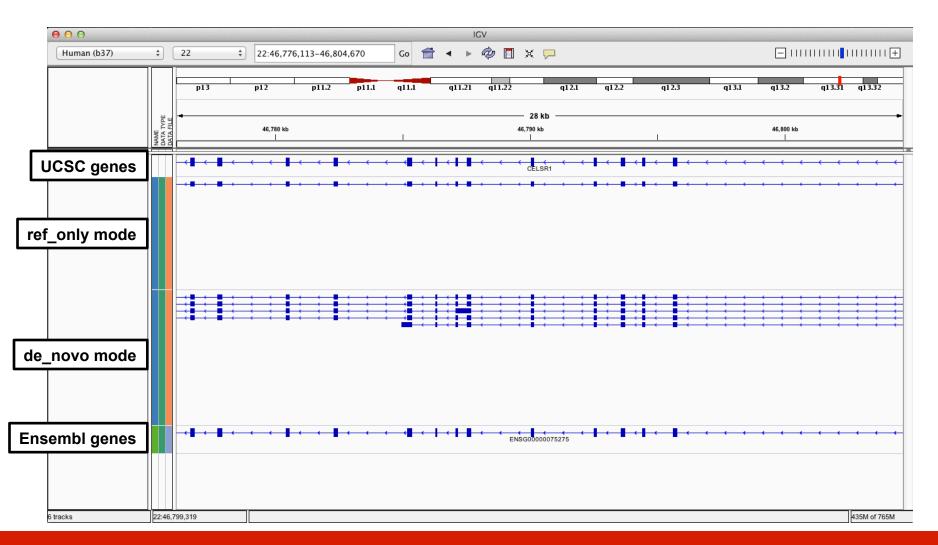
RNA sequencing and analysis

Viewing the junctions.bed in IGV



RNA sequencing and analysis

5-iii, iv. StringTie merge


- <u>https://ccb.jhu.edu/software/stringtie/index.shtml</u>
- StringTie merge combines transcripts predicted from multiple RNA-seq data sets into one view of the transcriptome
 - Do this before running StringTie to compare between multiple conditions
- StringTie merge can also simultaneously compare transcripts to the known transcripts GTF file from Ensembl, etc.
 - <u>http://cufflinks.cbcb.umd.edu/manual.html#class_codes</u>

5-v. Comparison of merged GTFs from each StringTie mode

RNA sequencing and analysis

Comparison of merged GTFs from each StringTie mode

RNA sequencing and analysis

We are on a Coffee Break & Networking Session

RNA sequencing and analysis