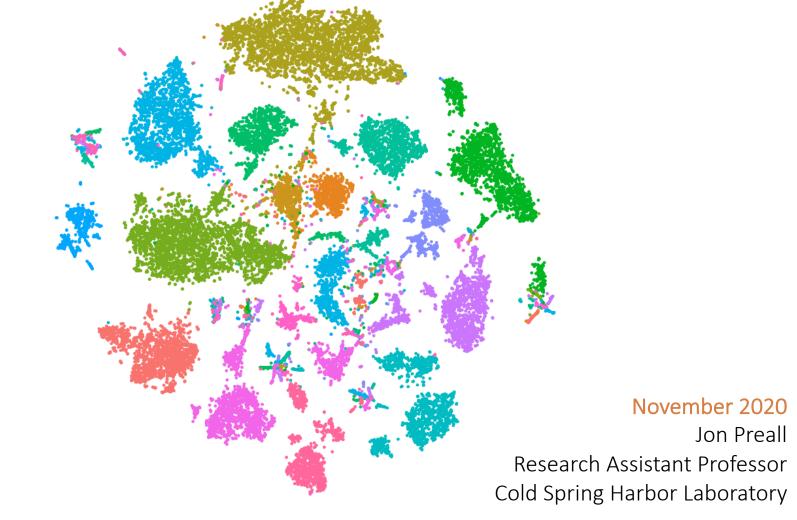
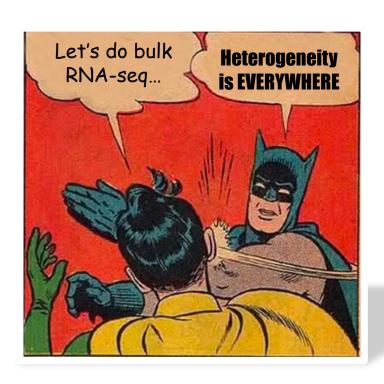
Single Cell Sequencing

CSHL Course: Advanced Sequencing Technologies & Applications



Why Sequence Single Cells?

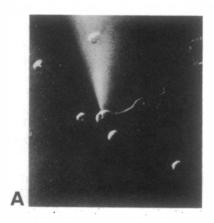


Analysis of gene expression in single live neurons

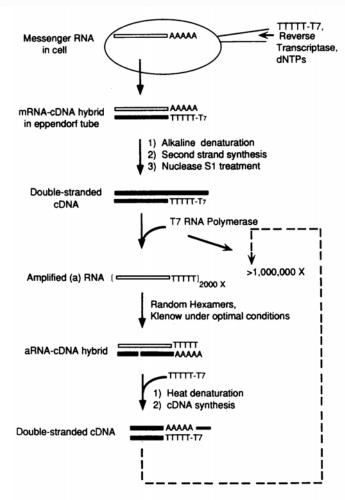
(amplified, antisense RNA/expression profile/mRNA complexity/pyramidal cell)

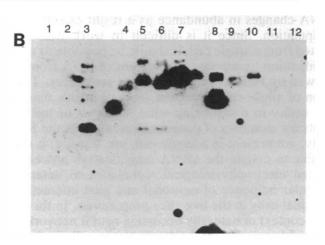
James Eberwine*†‡, Hermes Yeh§, Kevin Miyashiro*, Yanxiang Cao*, Suresh Nair*, Richard Finnell*¶, Martha Zettel§, and Paul Coleman§

Departments of *Pharmacology and †Psychiatry, University of Pennsylvania Medical School, Philadelphia, PA 19104; and Department of §Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, NY 14642



Microinjection of cDNA synthesis reagents directly into single neurons





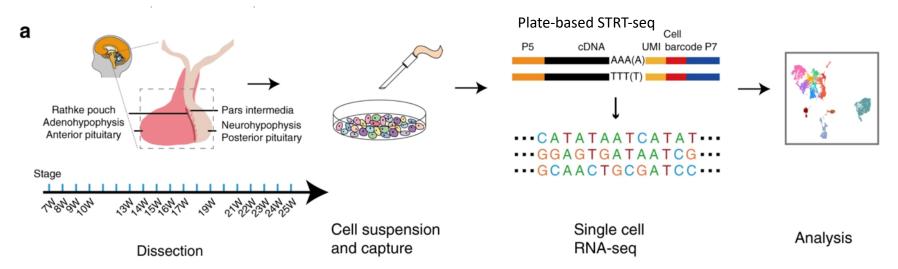
Southern Blot
Plasmid standards
containing gene of interest
Probed with aRNA

1992

Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development

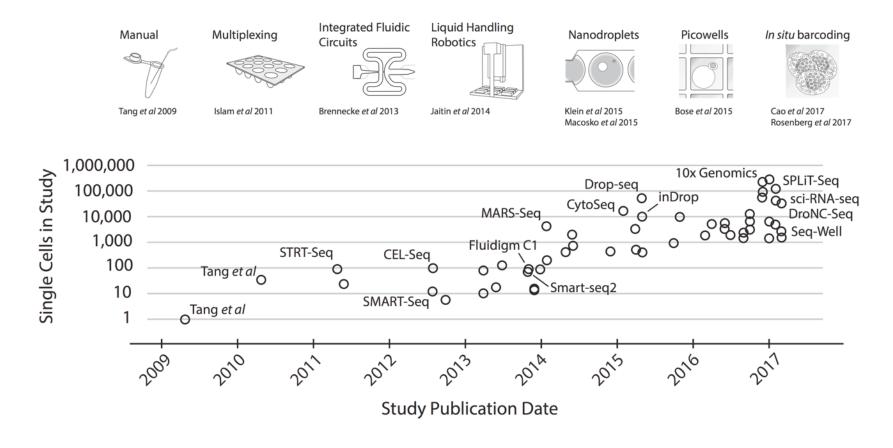
Shu Zhang, Yueli Cui, Xinyi Ma, Jun Yong, Liying Yan, Ming Yang, Jie Ren, Fuchou Tang, Lu Wen ☑ & Jie Qiao ☑

Nature Communications 11, Article number: 5275 (2020) | Cite this article



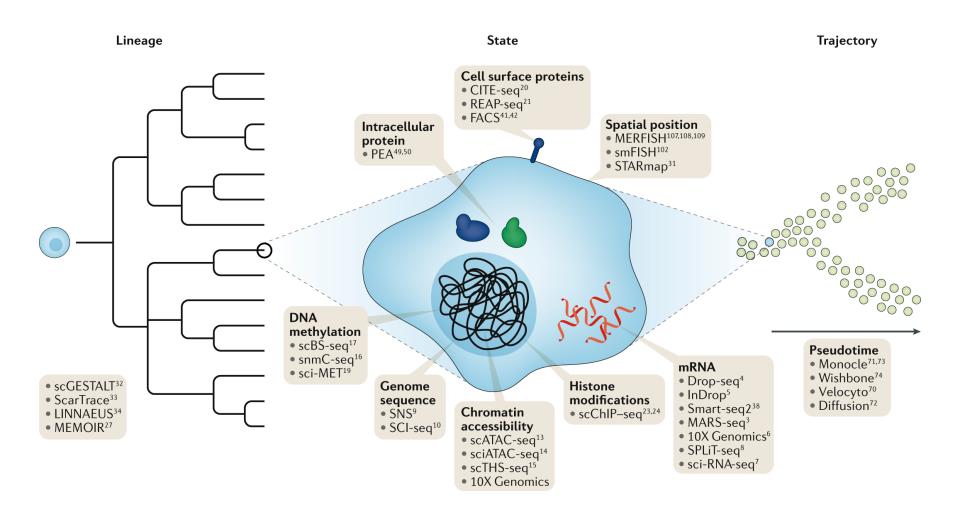
4,113 mouth-pipetted cells!

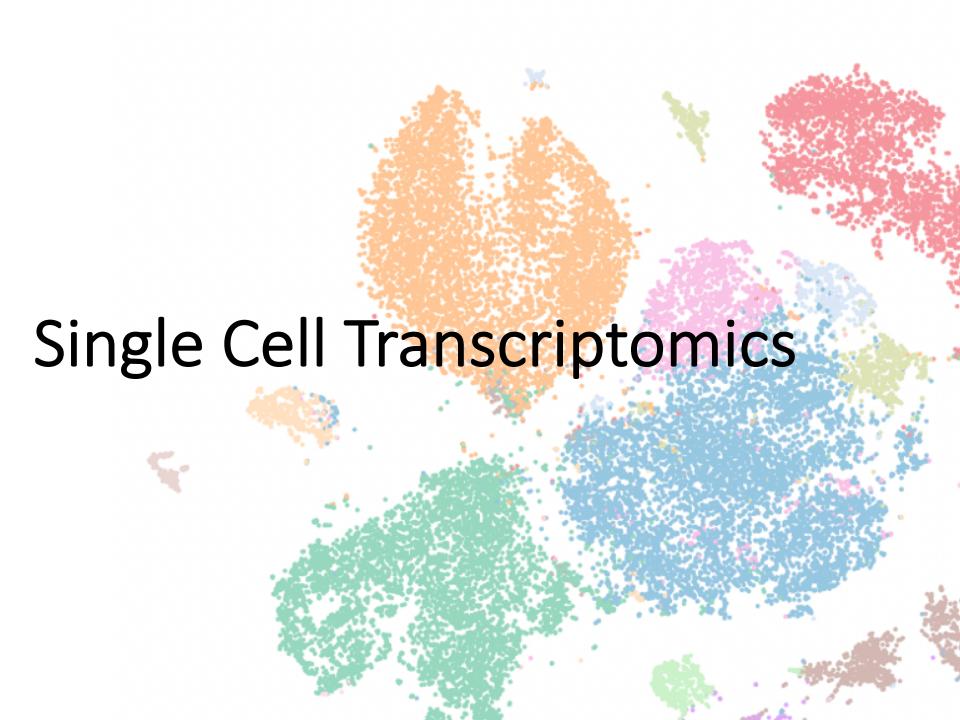
The Rapid Rise of Single Cell Biology



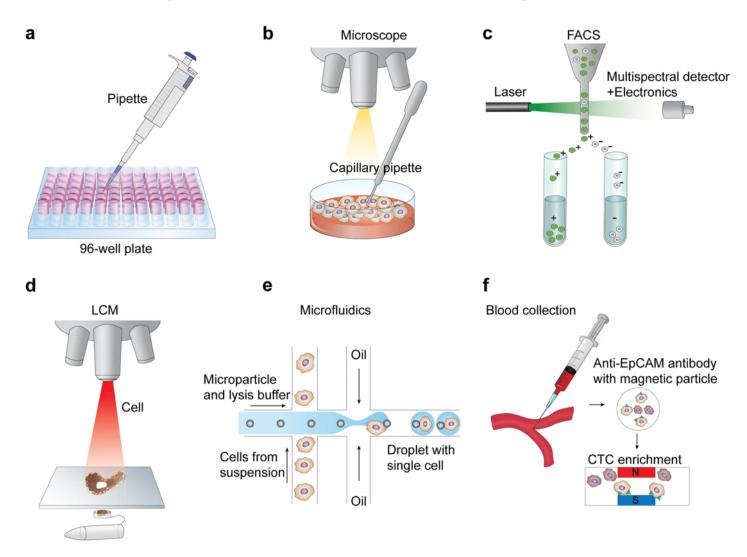
~10-fold increase in # of cells profiled every other year

Many Flavors of Single cell 'Omics

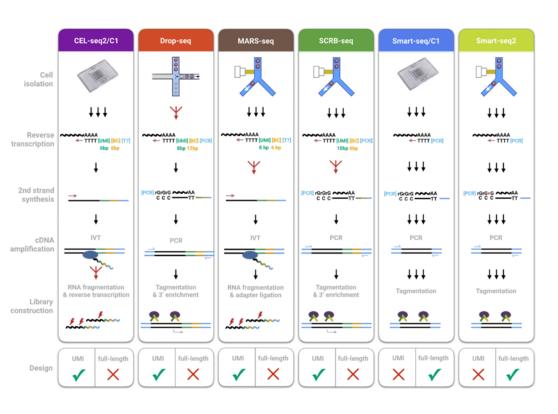




Step 1: Partitioning Cells



Step 2: Library Preparation



What question are you asking?

Simple Gene expression?

Strand-selective?

Alternative splicing / polyA / TSS?

Allele-specific expression?

Genotype heterogeneity (eg. in cancer)?

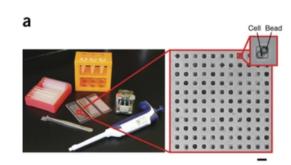
Depth vs Breadth?

Most Common Platforms

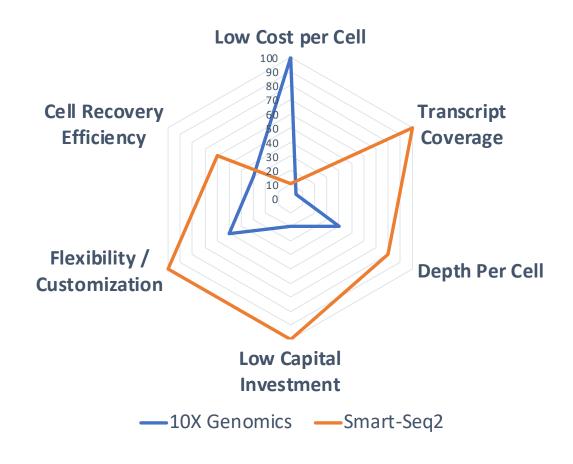
- Droplet / Bead
 - 10X Genomics Chromium

- BD Rhapsody

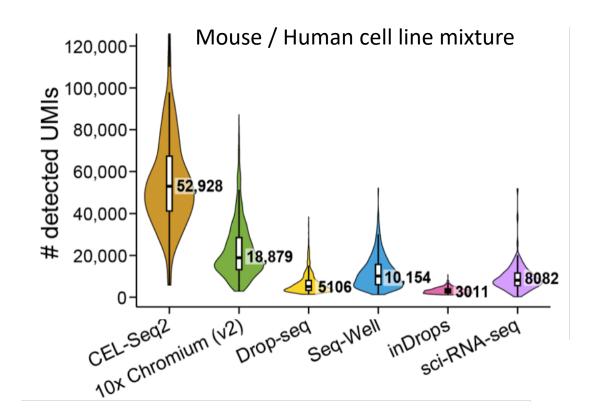
- Bio-Rad ddSeq
- Plate-based
 - SMART-Seq (v2, v3)
 - CEL-Seq2
- Nanowell
 - Seq-Well



Which Method Should I Use?

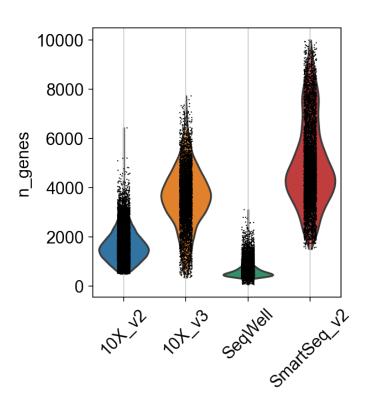


Systematic comparative analysis of single cell RNAsequencing methods



Mouse Fibroblasts:

Unique Genes Detected across technologies



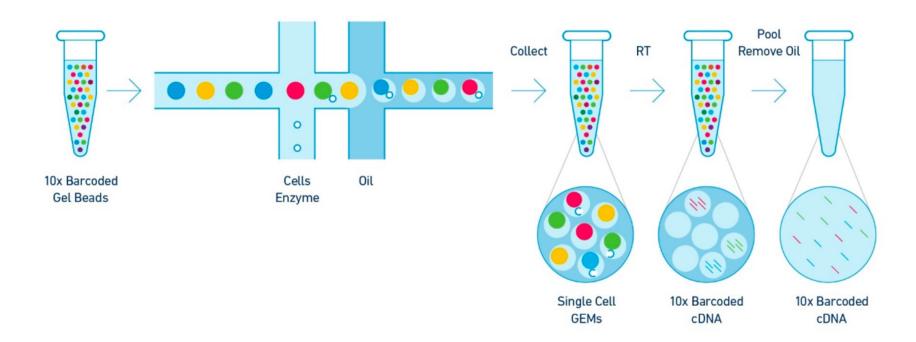
10X Genomics Platform

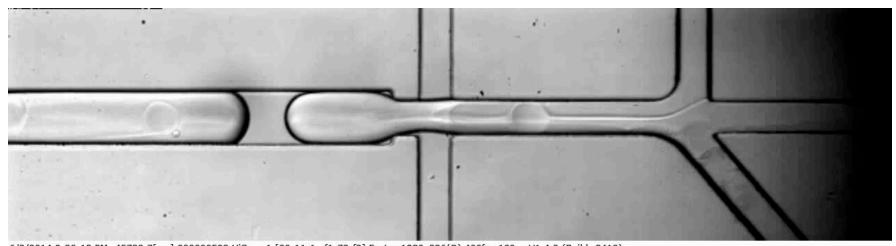
Chromium Controller

- Hydrogel barcoded beads
- Pseudo-single Poisson Loading
- Partition up to 80,000 single cells per run
- ~10 min run time
- ~50% of input cells generate usable data
- Partition cells up to 30um in diameter
- ~1% doublet rate, scales linearly w/cell #

"Lingua Franca" of single cell transcriptomics

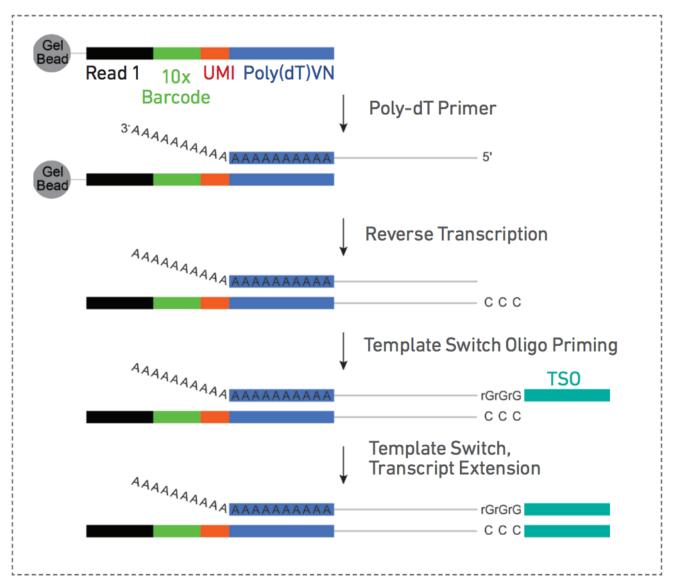
10X Genomics Workflow

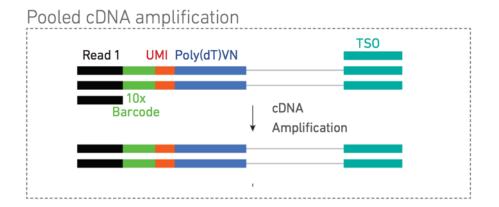




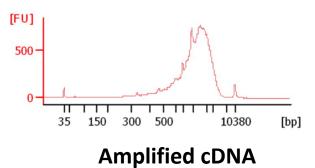
6/3/2014 9:30:12 PM -43738.7[ms] 000000523 HiSpec 1 [00-11-1c-f1-73-f3] Fastec 1280x336(Q) 400fps 100µs V1.4.3 (Build: 2419)

Single Cell 3' Chemistry Overvivew

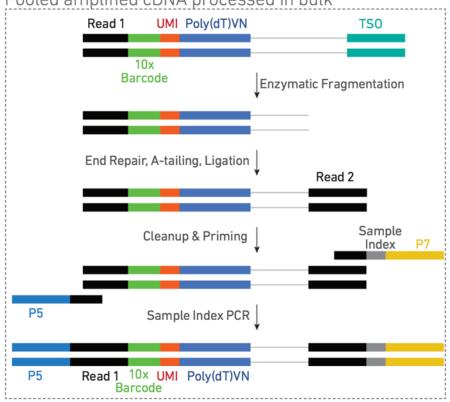


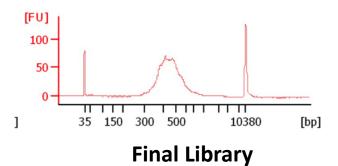


Bioanalyzer

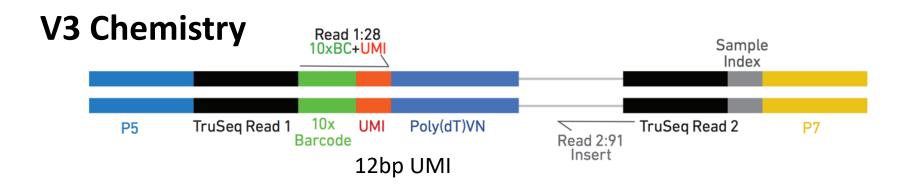


Pooled amplified cDNA processed in bulk





Anatomy of a 10X 3'-Single Cell Amplicon



Unique Molecular Identifier (UMI)

Random ~8-10bp sequence incorporated during oligo synthesis

Cell barcode UMI
CCCCCCCXXXXXXTTTTTTTTTVN

CCCCCCXXXXXXTTTTTTTTTTTVN

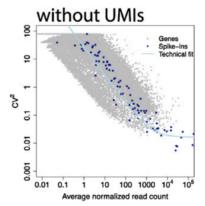
AAAAAAAAABN---IFNgamma----

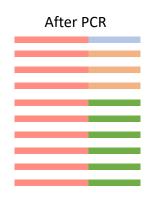
CCCCCCCXXXXXXXTTTTTTTTTTVN

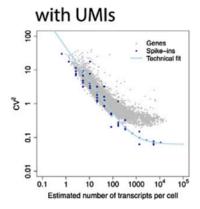
AAAAAAAAABN---IFNgamma----

CCCCCCCXXXXXXXTTTTTTTTTTVN

AAAAAAAAABN---IFNgamma----



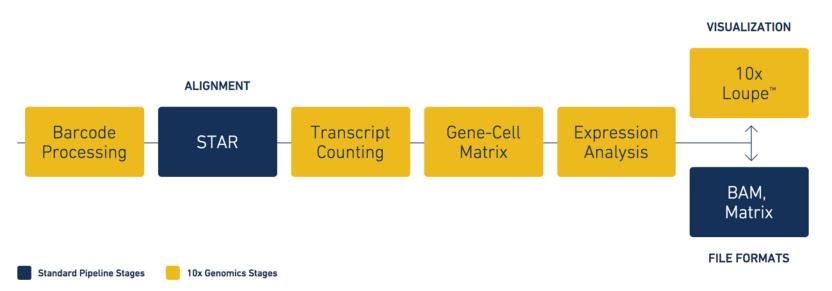




Mapping and Transcript Quantification

Cellranger Count pipeline: 10X Genomics support page

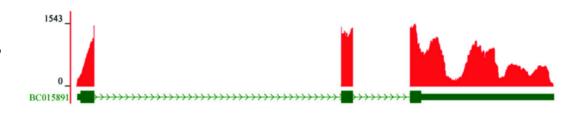
SINGLE CELL RNA ANALYSIS PIPELINE FOR THE CHROMIUM SINGLE CELL 3' SOLUTION



Digital Gene Expression, Not Coverage

"Deep" Single Cell Libraries

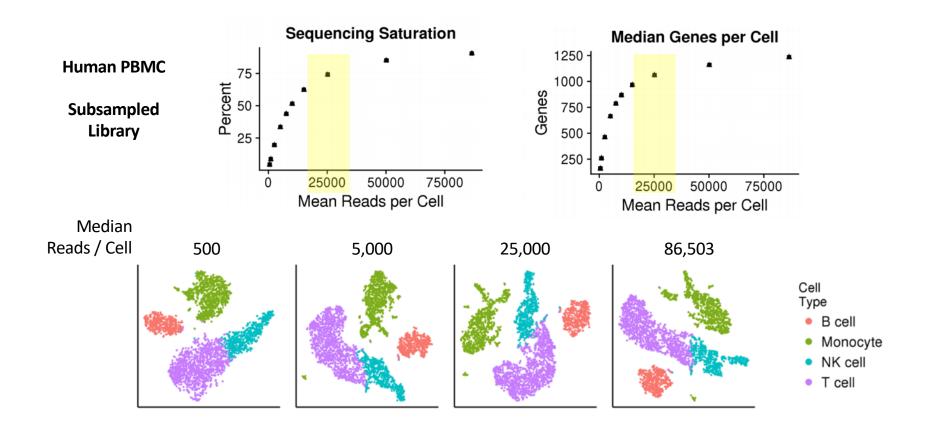
Well-based, eg. SmartSeq Fluidigm C1



Droplet – Based DGE libraries

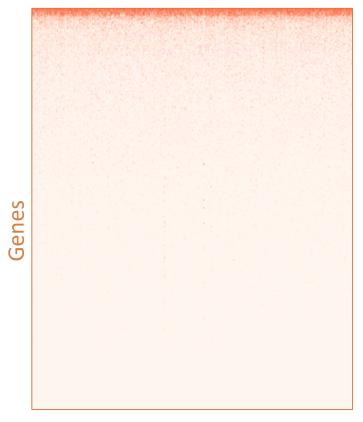
Drop-Seq 10X Genomics Seq-Well

How Deeply Should I Sequence?



Sparse sampling of gene expression

Gene-Cell Sparse Matrix



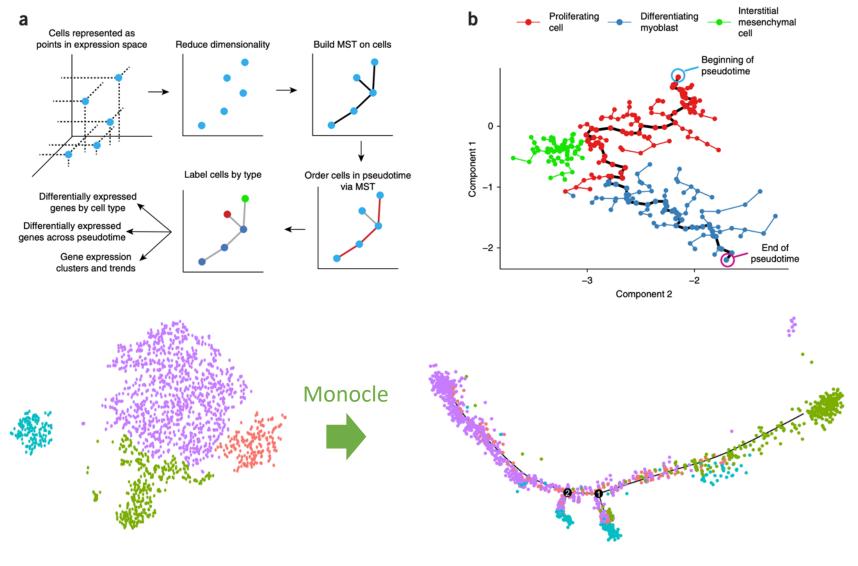
Тор	Gene Expression	US Wealth
1%	15%	35%
10%	55%	73%
20%	73%	86%

Cells

Basic output of scRNAseq pipeline



Pseudotime analysis



Pseudotime

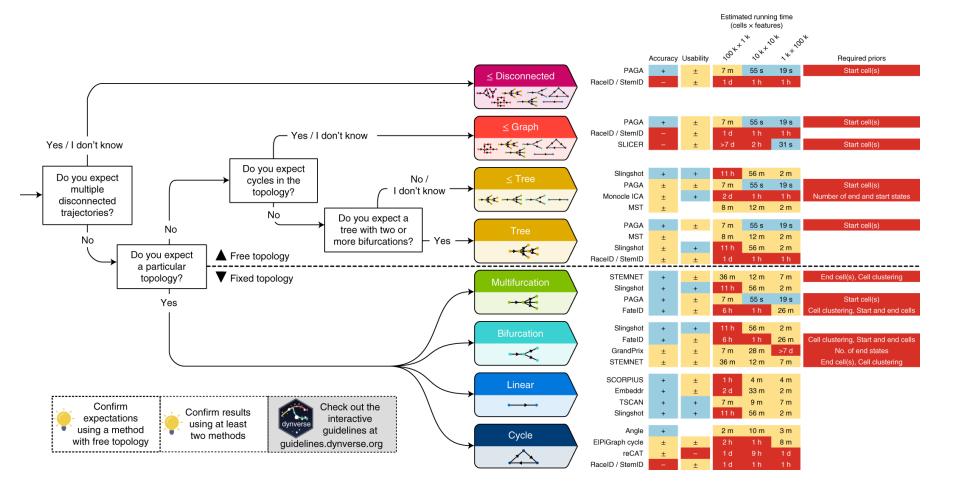
Dozens of methods developed

Vary in terms of feature selection, dimensionality reduction, tree construction, etc



Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

Pseudotime — which method to use?



Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

RNA Velocity

Estimates rates of change in mRNA levels by modeling nascent RNA synthesis

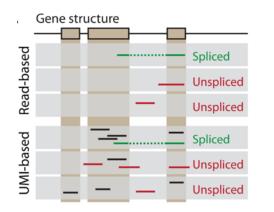
Quantifies spliced / unspliced

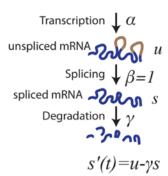
Models dynamics

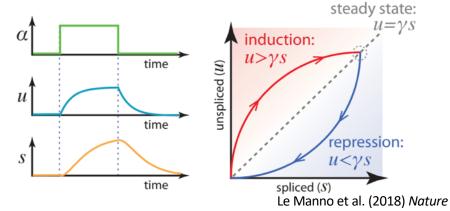
CAVEATS: Gene annotations

Cryptic exons

unannotated intronic genes
repetitive elements

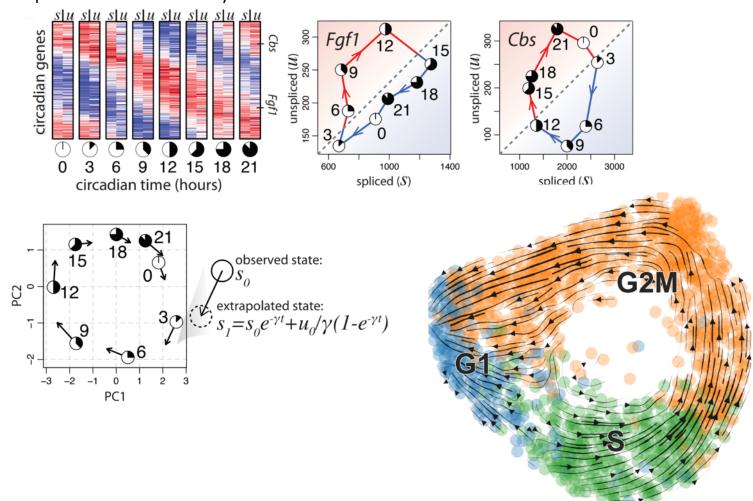




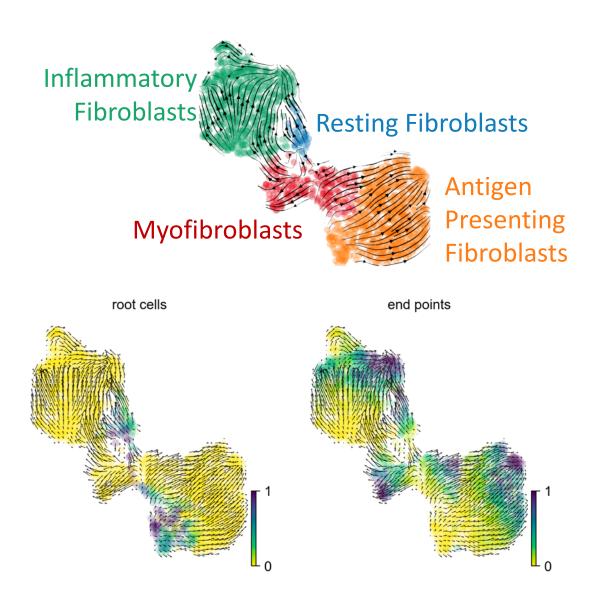


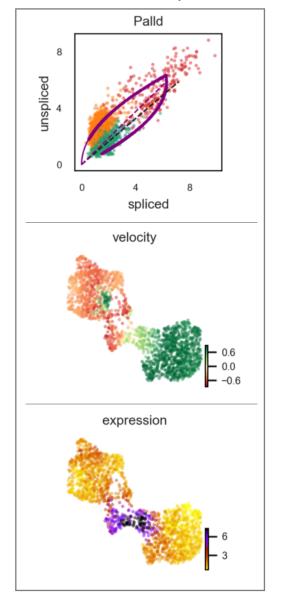
RNA Velocity

Bulk RNAseq from mouse circadian rhythm data



Inferring Differentiation Trajectories from RNA Velocity





SCENIC

single-cell regulatory network inference and clustering

Transcription Factor Activity Inference

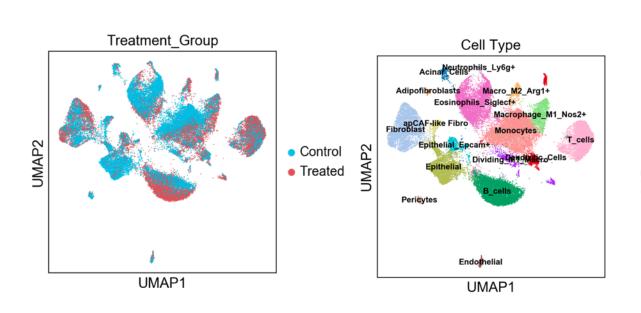
Gene Co-expression network

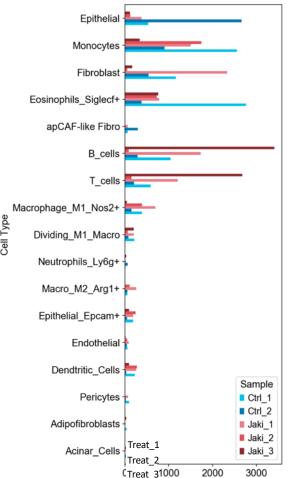
Motif search

Regulon activity



scRNAseq is a poor cytometry tool

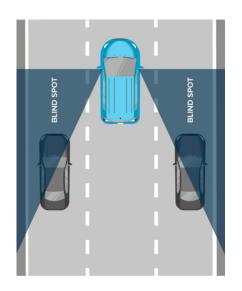




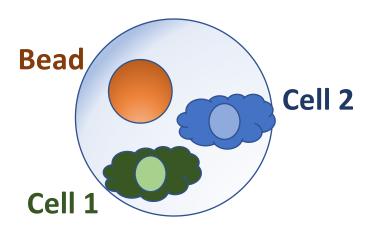
- Unreliable highly sensitive to conditions
- Expensive
- Low throughput

Blind Spots

- Some cell types might be missed
 - Low mRNA count filtered from matrix
 - Early 10X Genomics Software (v2)
 - Defaulted to exclude lots of lymphocytes
 - Hard to dissociate from tissue
 - Fibroblasts
 - Cells might die quickly during prep
 - Stem cells
 - Fragile: (Acinar cells, Plasma cells)
 - High RNAse / protease content (Acinar, Neutrophils)
 - Peripheral blood neutrophils especially!!!
 - Doublets / Multiplets



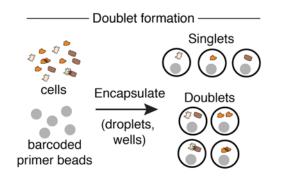
Doublets

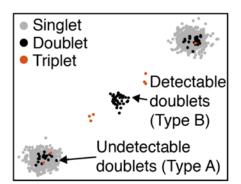


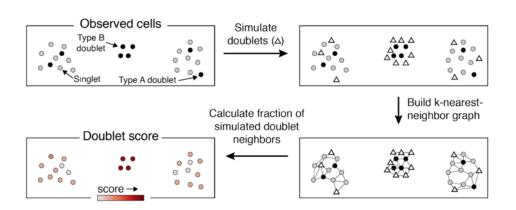
- •<u>DoubletFinder</u> [R] Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. BioRxiv
- •<u>DoubletDecon</u> [R] Cell-State Aware Removal of Single-Cell RNA-Seq Doublets. [BioRxiv](DoubletDecon: Cell-State Aware Removal of Single-Cell RNA-Seq Doublets)
- •<u>DoubletDetection</u> [R, Python] A Python3 package to detect doublets (technical errors) in single-cell RNA-seq count matrices. An <u>R implementation</u> is in development.
- •<u>Scrublet</u> [Python] Computational identification of cell doublets in single-cell transcriptomic data. <u>BioRxiv</u>

 Proportional to concentration of cell suspension

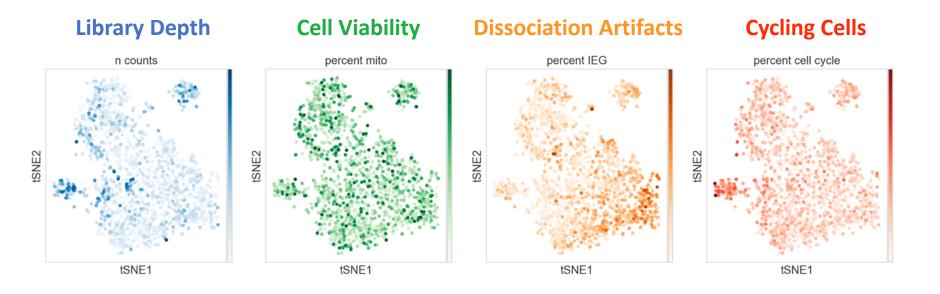
Scrublet



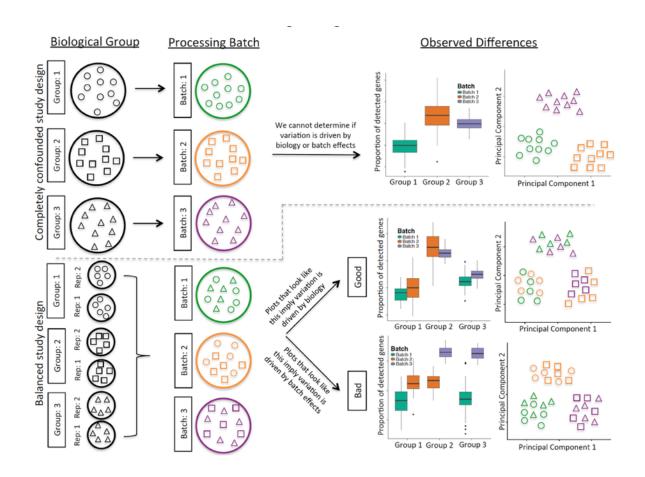




Sources of Measurement Noise

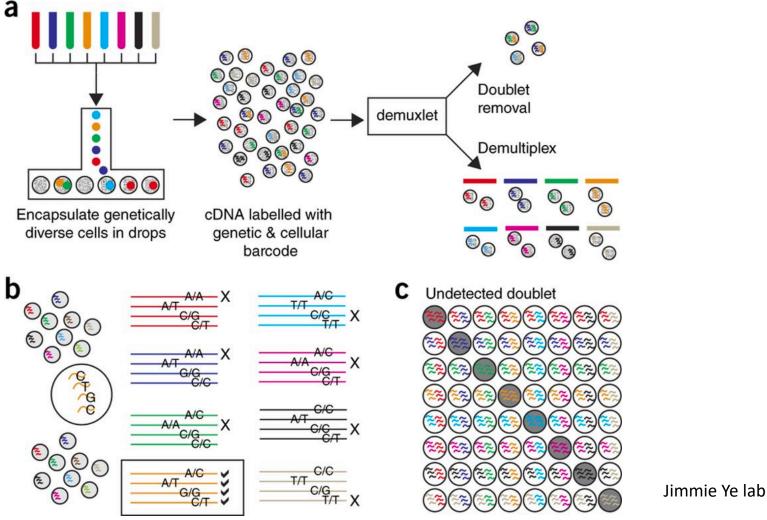


Batch effects and study design



Multiplexing Using Natural Genetic Variation

Demuxlet



Nature Biotechnology **36**, 89–94 (2018)

Sex – matched studies are helpful!

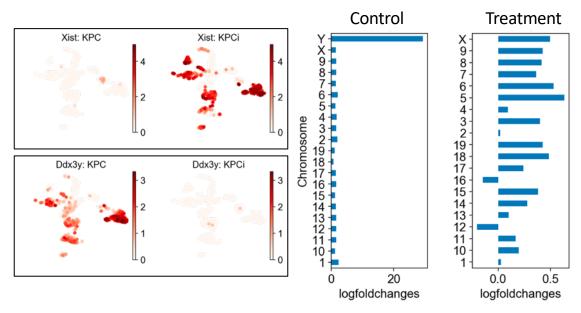
Major confounder: Male / Female

Treatment: Female

Control: Male

Consequence:

Unsupervised differential gene expression calling will be dominated by sex-specific expression. No way of separating this variable from the treatment variable



Batch Correction

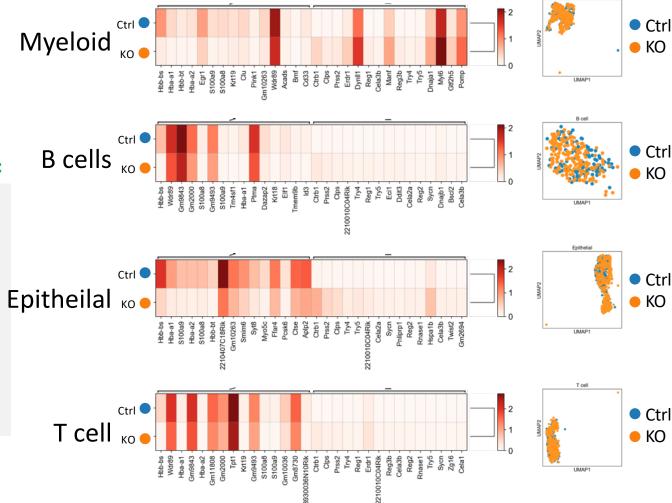
Confounded Study Example:

WT and KO mice

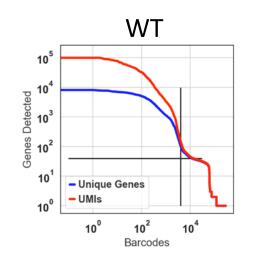
Prepared on same day Same colony Same set of hands

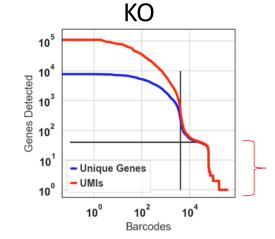
Diffex dominated by same genes within every cluster

! major batch effect issues

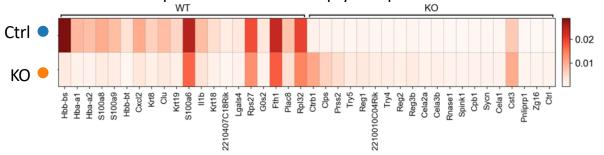


Controlling for batch effects





Ambient RNA in droplets

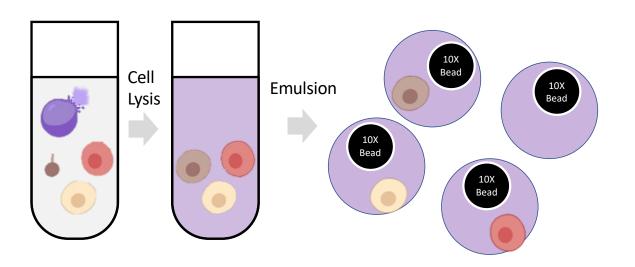


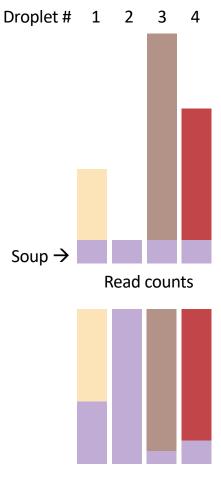
Significant sources of contaminating mRNA:

WT: Erythrocytes
Epithelial
Granulocytes

KO: Acinar cells

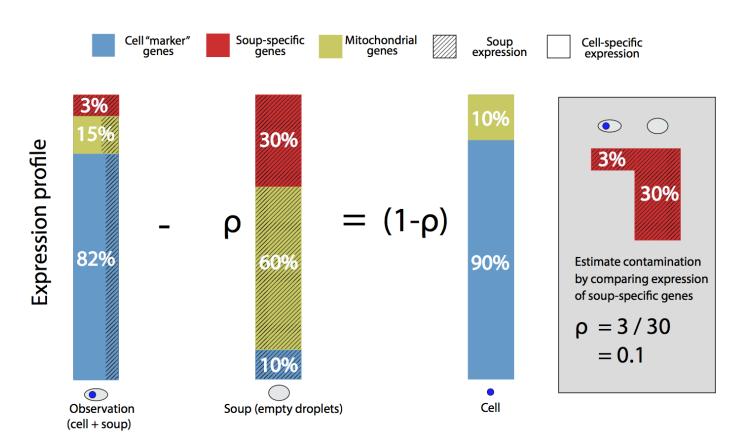
Ambient RNA: "SOUP"





Proportion of droplet reads

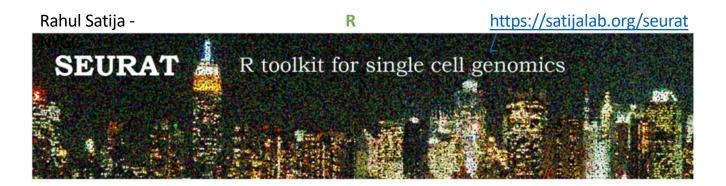
SoupX



Young and Behati (bioRxiv) 2018.

https://www.biorxiv.org/content/10.1101/303727v1

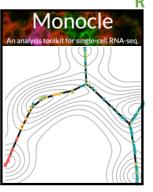
Getting started with your own analyses



Fabian Theis - München

https://scanpy.readthedocs.io/en/latest/

Python



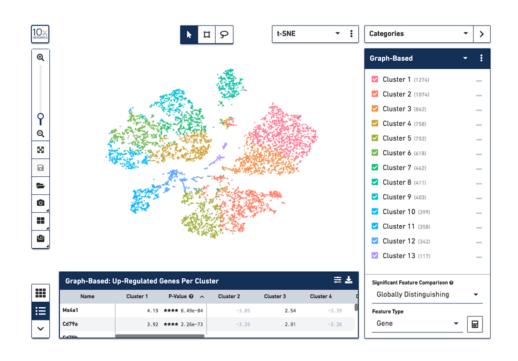
Cole Trapnell –WashU

Macosko lab

AWESOME SINGLE CELL RESOURCE

https://github.com/seandavi/awesome-single-cell

Loupe Cell Browser



https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest

Can:

- Quickly visualize genes
- Do guided clustering via marker genes / tSNE selections
- Calculate Differential Expression
- Export cells and gene sets for reanalysis on Cellranger (cluster)

Can't

- Redo unsupervised clustering / tSNE / UMAP
- Repeat PCA / gene set selection
- Pseudotime, other fancy things

The Best Site On the Internet. Probably.

https://github.com/Teichlab/scg_lib_structs

Detailed visual guides to dozens of singlecell genomics methods

Adapter and primer sequences:

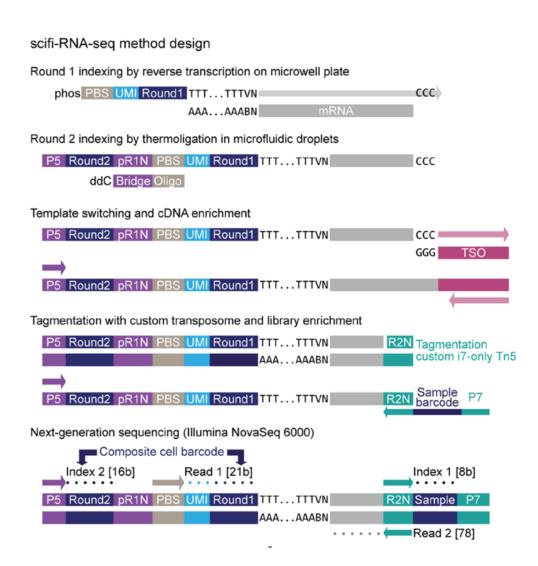
```
Barcoded Tn5 sequence s5: 5'- TCGTCGGCAGCGTCTCCACGC[8-bp Tn5 index]GCGATCGAGGACGGCAGATGTGTATAAGAGACAG -3'
    Barcoded Tn5 sequence s7: 5'- GTCTCGTGGGCTCGGCTGTCCC[8-bp Tn5 index]CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG -3'
    Tn5 binding site 19-bp Mosaic End (ME) bottom: 5'- /Phos/AGATGTGTATAAGAGACAG -3'
    P5 index primer entry point (s5): 5'- TCGTCGGCAGCGTCTCCACGC -3'
    P7 index primer entry point (s7): 5'- GTCTCGTGGGCTCGGCTGTCCC -3'
    P5 index primer: 5'- AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTCTCCACGC -3'
    P7 index primer: 5'- CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGGCTGTCCC -3'
    Read 1 sequencing primer: 5'- GCGATCGAGGACGGCAGATGTGTATAAGAGACAG -3'
    Index 1 sequencing primer (i7): 5'- CTGTCTCTTATACACATCTGAGGCGGAGACGGTG -3'
    Read 2 seuquencing primer: 5'- CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG -3'
Product 1 (s5 at both ends, not amplifiable due to semi-suppressive PCR:
XXX...XXXXXXXXXXXXXGACAGAGAATATGTGTAGACGGCAGGAGCTAGCG[8-bp Tn5 index]CGCACCTCTGCGACGGCTGCT -5'
Product 2 (s7 at both ends, not amplifiable due to semi-suppressiev PCR):
XXX...XXXXXXXXXXXXXXGACAGAGAATATGTGTAGACTCCGCCTCTGCCAC[8-bp Tn5 index]CCTGTCCGTGTCGGCTCGGGTGCTCTG -5'
```

Hacking Droplets

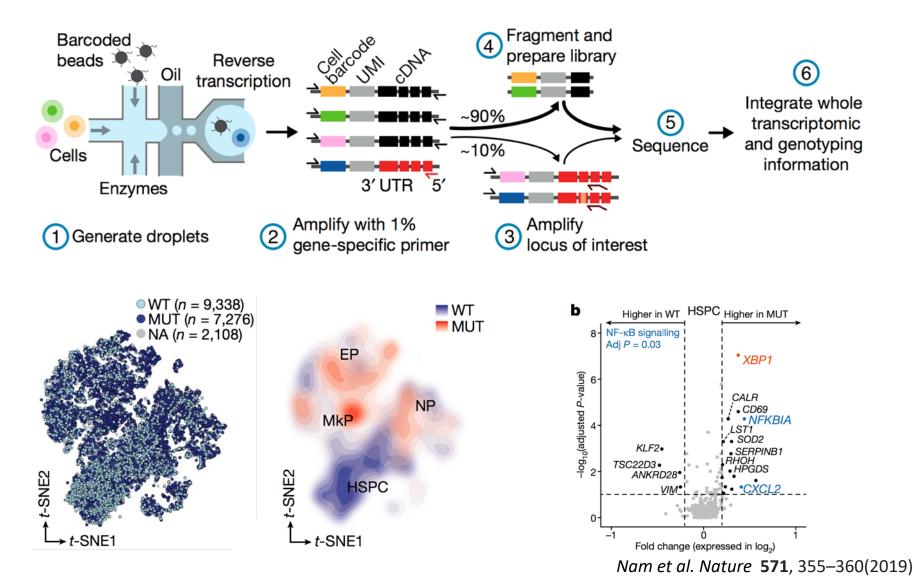
scifi-RNA-seq

Combinatorial fluidic indexing

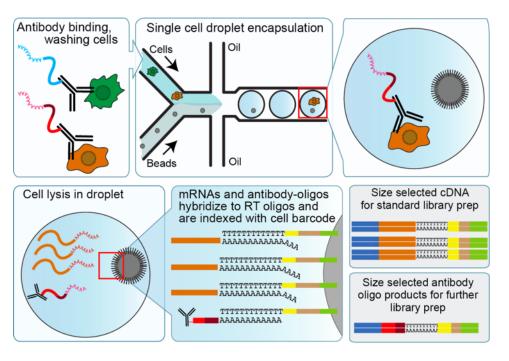
- Massive improvement in # cells
- Up-front barcoding in plates via RT
- Swaps chemistry of 10X Genomics:
 - Uses 10X Gel beads
 - Ligation instead of RT
- Up to 150,000 cells per channel
 - (15X increase)



Genotyping of Transcriptomes



CITE-Seq / REAP-Seq

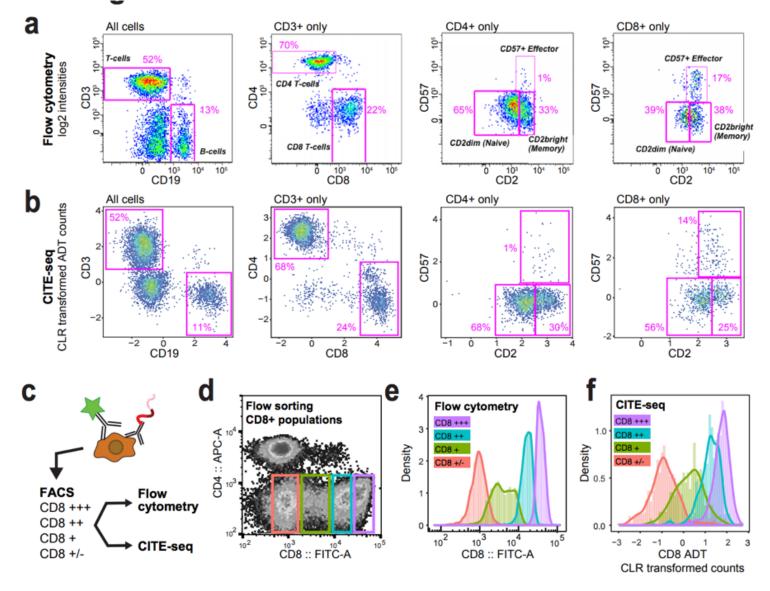


Antibody Derived Tag (ADT) sequenced as part of normal 10X run

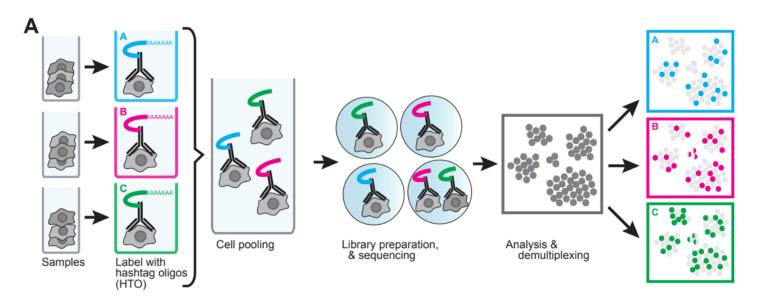
Enables:

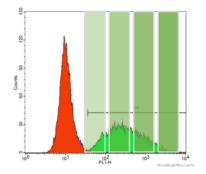
- Simultaneous mRNA + Protein Abundance
- Increased sensitivity to individual targets
- 'Superloading'

CITE-Seq / REAP-Seq



Multiplexing with ADTs: "Cell Hashing"



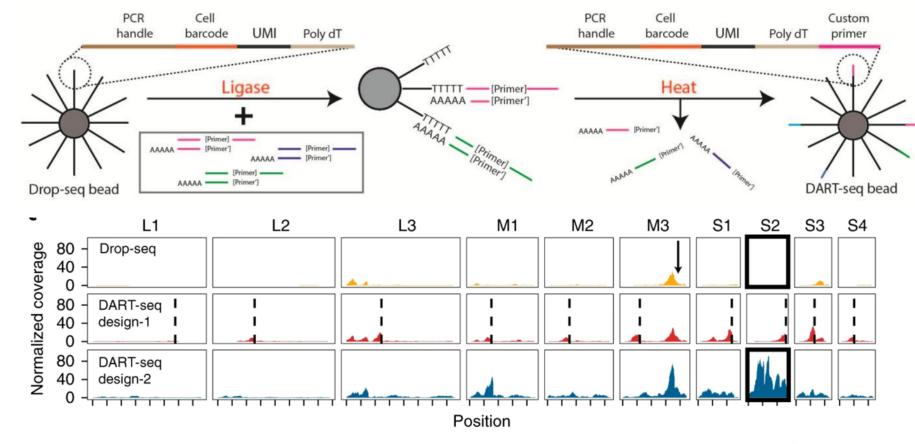


Sort multiple bins → HTO Label → Repool & Capture

DART-seq

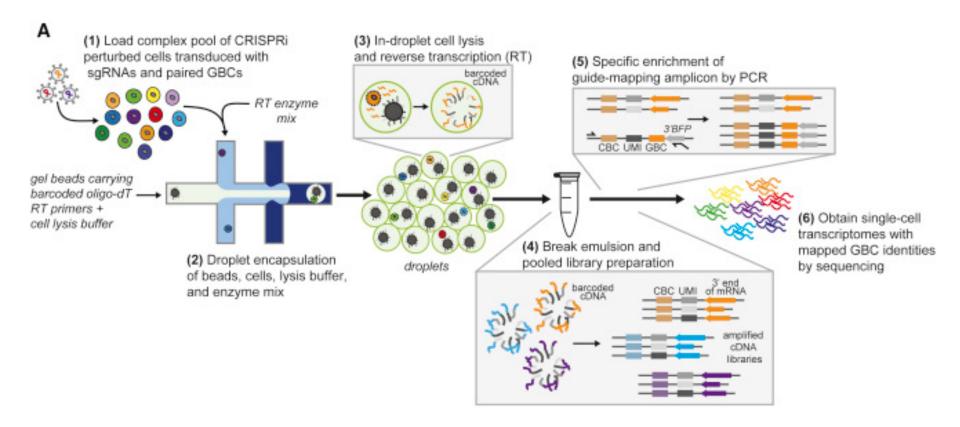
Droplet-Assisted RNA Targeting by single-cell sequencing

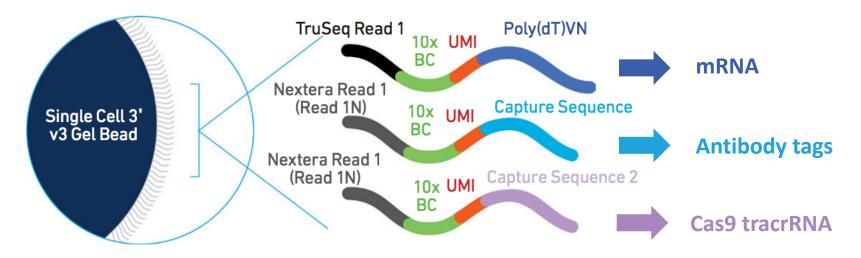
- Modification of barcoded bead to prime non-poly(A) transcripts
- Ligate gene-specific primers to subset of oligo-dT sites via bridge oligo
 - Careful titration of primers necessary



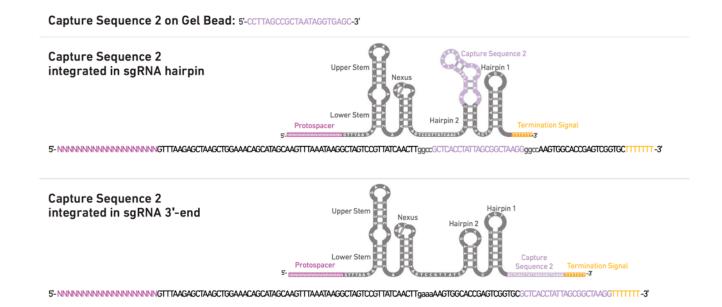
Saikia, M., Burnham, P., Keshavjee, S.H. *et al.* Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells. *Nat Methods* **16**, 59–62 (2019). https://doi.org/10.1038/s41592-018-0259-9

Perturb-Seq

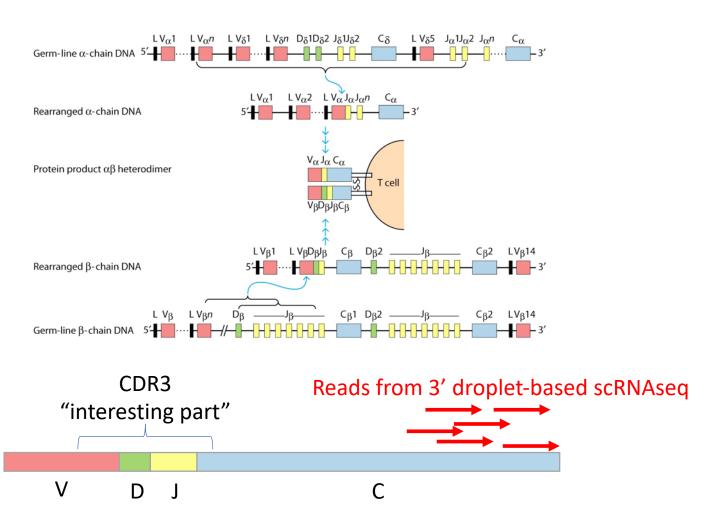




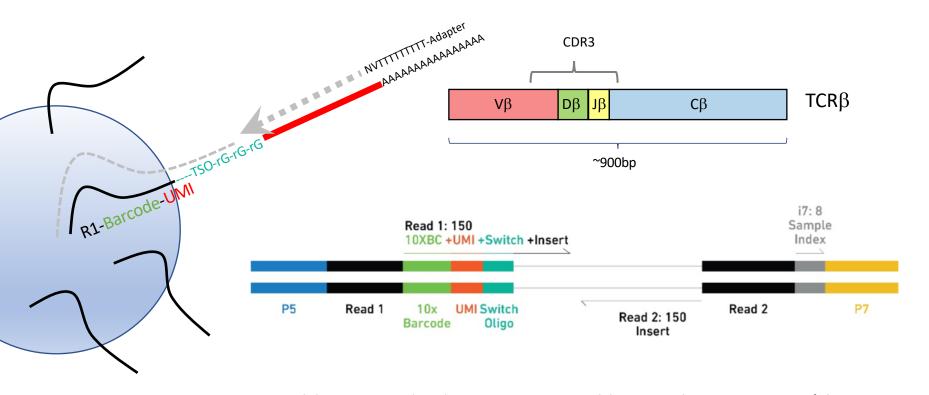
- Multiple RT primer sequences per bead
- High efficiency capture of antibody tags, CRISPR guides



TCR/BCR Profiling

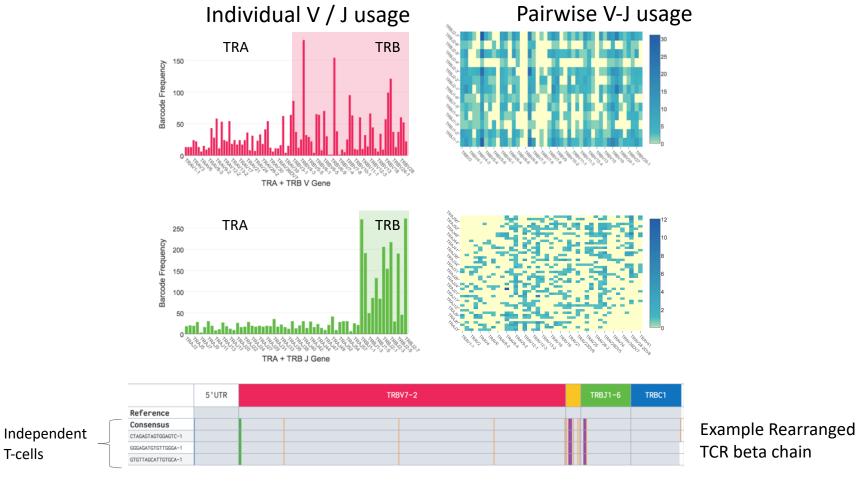


5'-Barcoded Libraries



- Problem: standard transcriptome libraries have strong 3'-bias
- CDR3 mapping requires 5'-Barcoded library
- Random fragmentation to sample different 3'-ends of reads
- Require much longer reads (300bp) at a depth of 5,000X / cell

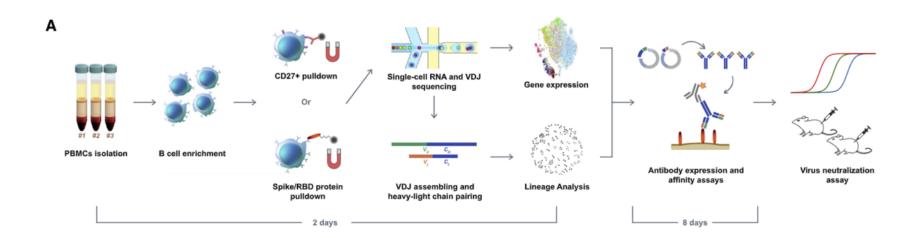
10X VDJ output example

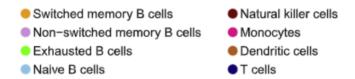


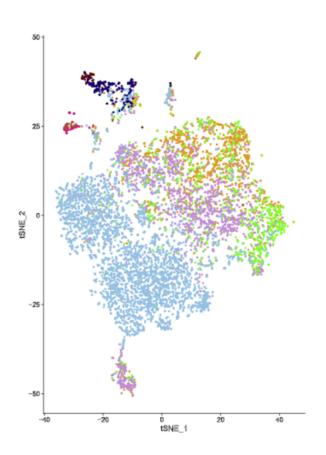
CDR3 AA: CASRRGGGKTYEQYF

NT: TGTGCCAGCCGCGGGGGGGGGGAAAACCTACGAGCAGTACTTC

Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells







Rapid Filter for Neutralizing antibody candidates:

VDJ sequencing:

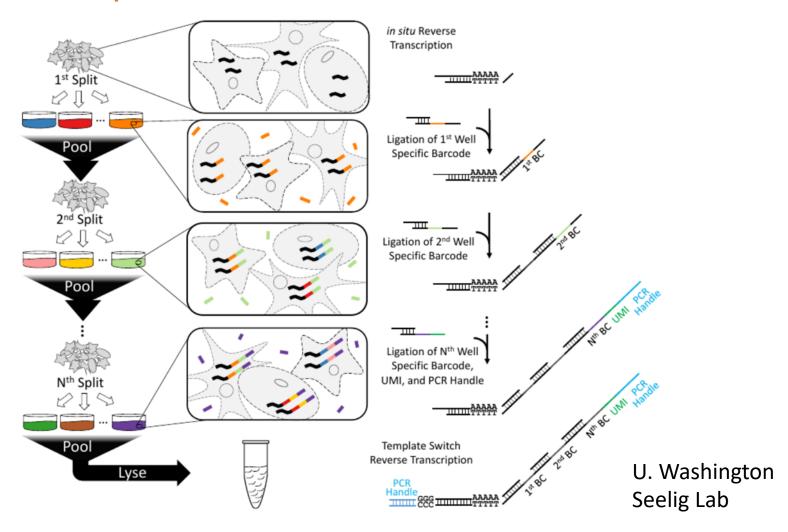
- 1. Select only IgG1 isotypes
- 2. Clones with multiple observed cells
- 3. Clones with somatic hypermutation

Gene expression analysis

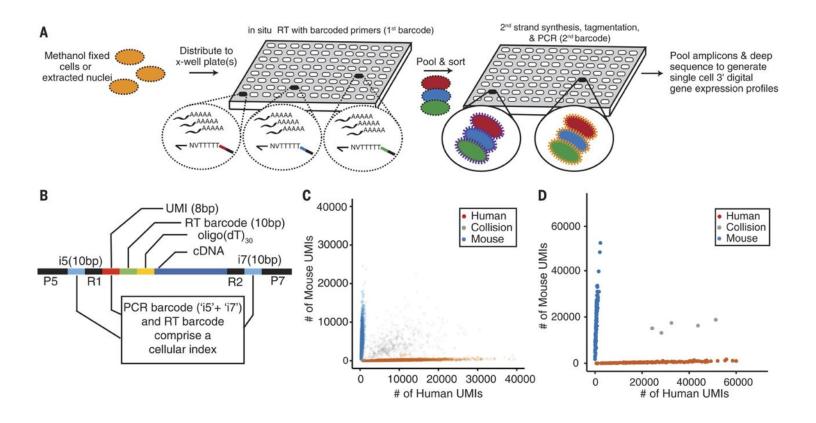
- 1. Exclude exhausted and naïve phenotypes
- 2. Favor memory and plasma phenotypes

Other high-throughput platforms

Combinatorial Indexing Split-Seq

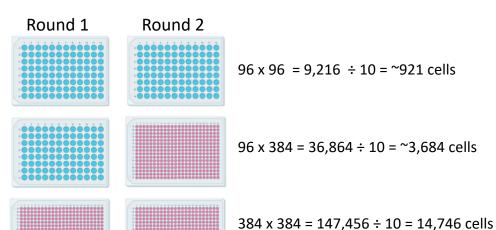


Combinatorial Indexing sci-Seq

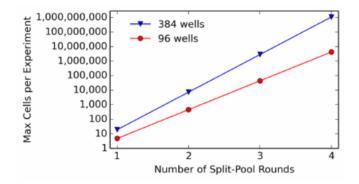


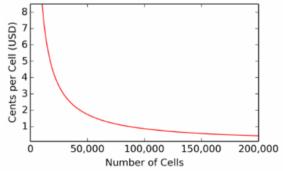
U. Washington Shendure Lab

Combinatorial Scaling



To avoid random sampling of same barcode combinations, use ~10% of total theoretical combinations as input





Enormously scalable
Can achieve <\$0.01 per cell

Labor intensive
Significant 'boot-up' cost
Significant validation cost
Who can afford that much sequencing, anyway?

The single-cell transcriptional landscape of mammalian organogenesis

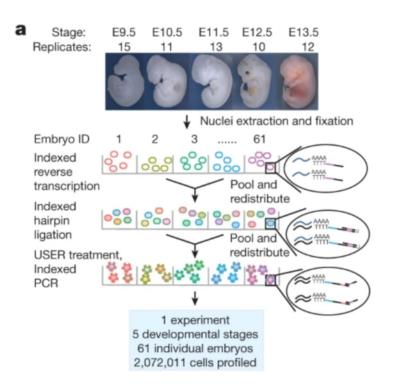
Junyue Cao, Malte Spielmann, Xiaojie Qiu, Xingfan Huang, Daniel M. Ibrahim, Andrew J. Hill, Fan Zhang, Stefan Mundlos, Lena Christiansen, Frank J. Steemers, Cole Trapnell

♣ Jay Shendure

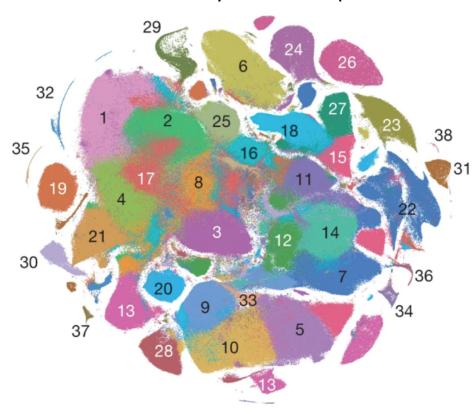
✓

Nature 566, 496-502(2019) | Cite this article

sci-RNA-seq3



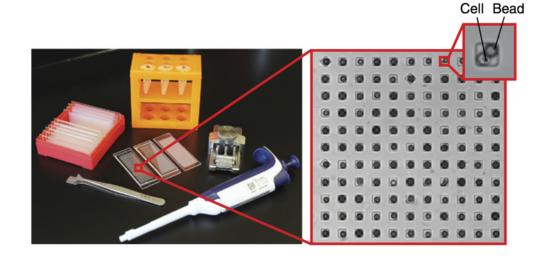
Mouse embryonic development

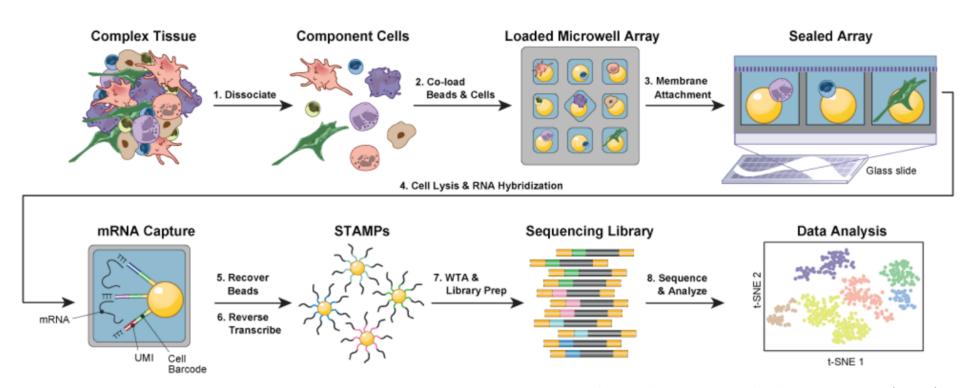


2,058,652 single-cell transcriptomes

Seq-Well

PDMS array of ~86,000 subnanoliter wells Sized to fit 1 bead per well Drop-Seq style barcoded beads Sealed chamber for each cell

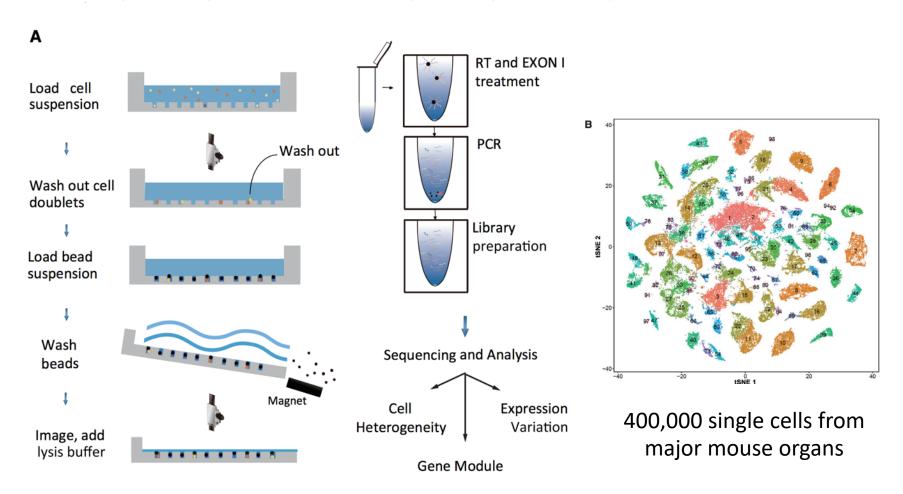




Gierahn et al. Nature Methods 14, 395–398 (2017)

Mapping the Mouse Cell Atlas by Microwell-Seq

Xiaoping Han,^{1,12,13,*} Renying Wang,^{1,12,13} Yincong Zhou,^{2,12,13} Lijiang Fei,^{1,12,13} Huiyu Sun,^{1,12,13} Shujing Lai,^{1,12,13} Assieh Saadatpour,¹¹ Ziming Zhou,^{1,12} Haide Chen,^{1,12} Fang Ye,^{1,12} Daosheng Huang,¹ Yang Xu,¹ Wentao Huang,¹ Mengmeng Jiang,^{1,12} Xinyi Jiang,^{1,12} Jie Mao,³ Yao Chen,⁴ Chenyu Lu,⁵ Jin Xie,⁶ Qun Fang,⁷ Yibin Wang,⁸ Rui Yue,⁸ Tiefeng Li,³ He Huang,^{9,12} Stuart H. Orkin,¹⁰ Guo-Cheng Yuan,¹¹ Ming Chen,^{2,12} and Guoji Guo^{1,9,12,14,*}

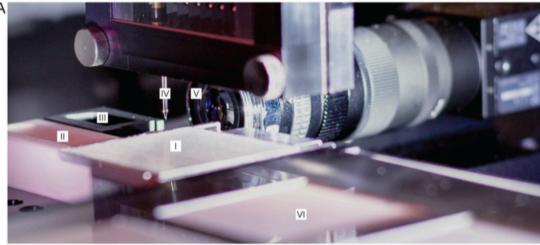


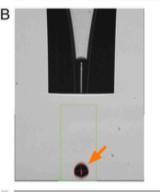
Array-based formats

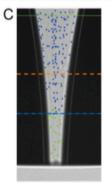
Cell / reagent arrayers

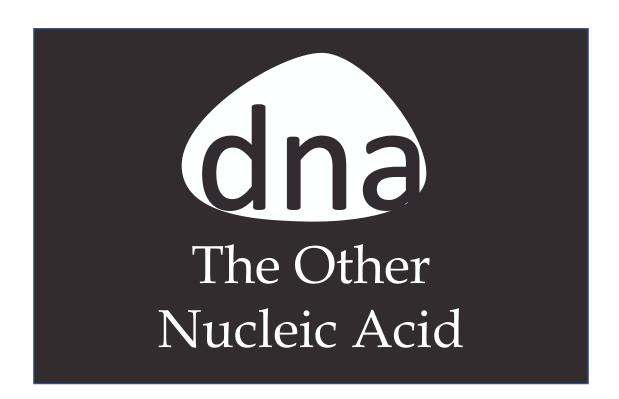
Eg. Scienion sciFlexarray Scienion cellenONE

Custom workflows
Imaging-based sorting / rejection





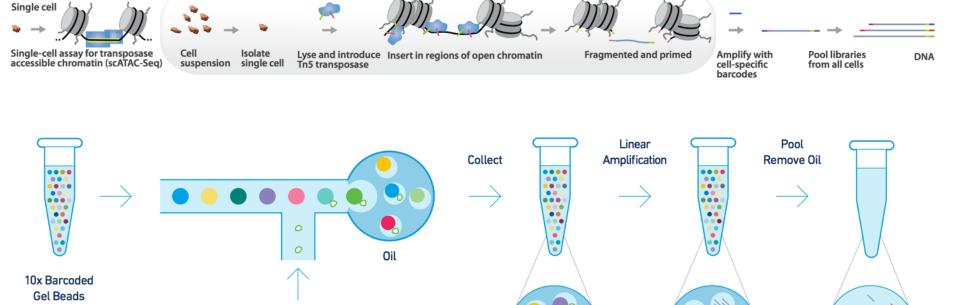




10X Genomics Single Cell ATAC

Microfluidics device

Transposition of Nuclei in bulk



Single Nucleus

GEMs

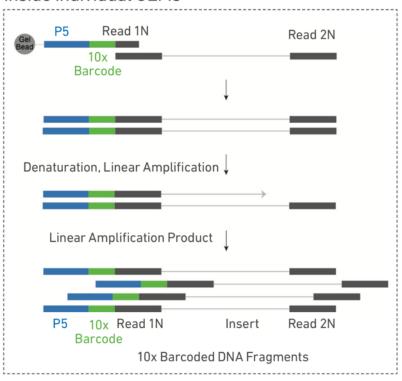
10x Barcoded Accessible

DNA Fragments

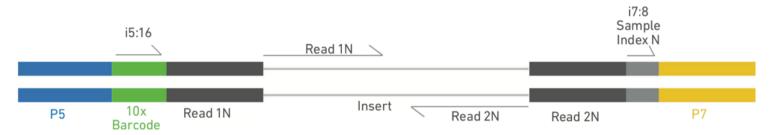
10x Barcoded Accessible DNA Fragments

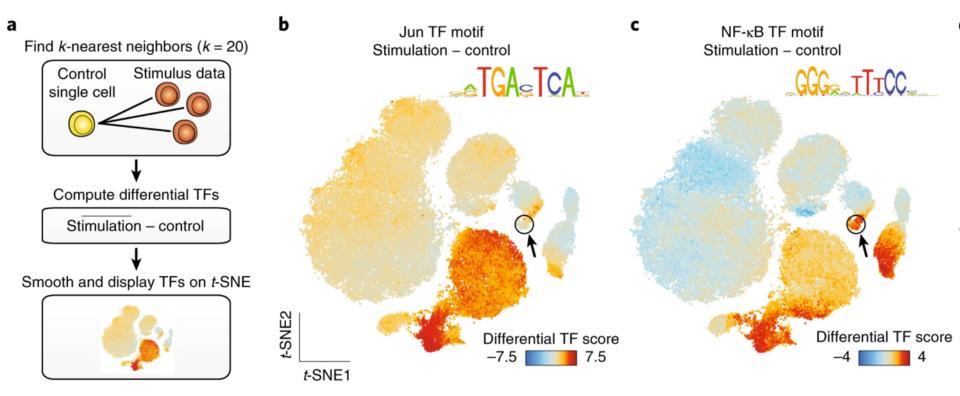
10X Genomics Single Cell ATAC

Inside Individual GEMs

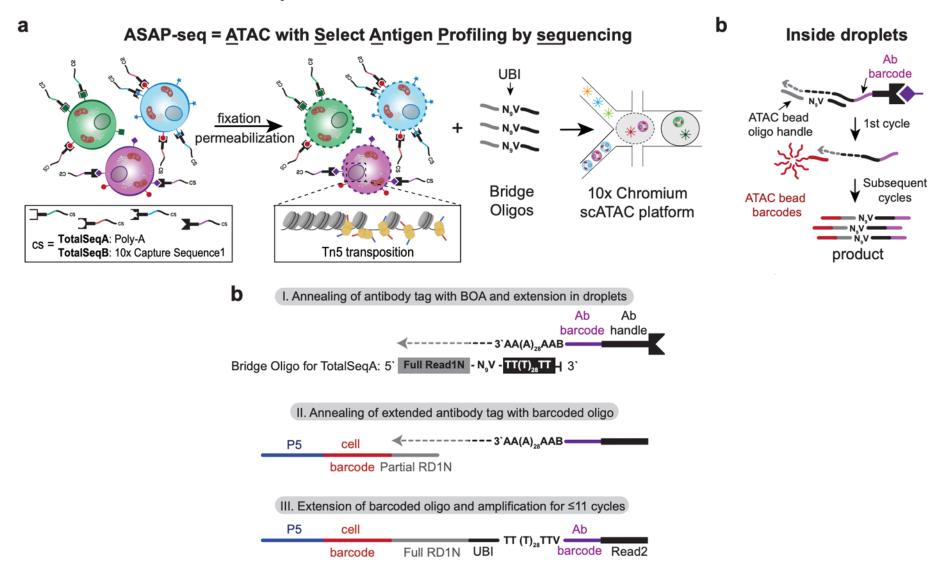


Chromium Single Cell ATAC Library

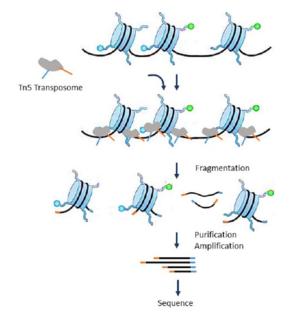




ASAP-seq



sci-ATAC

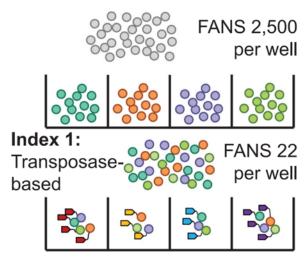


Round 1:

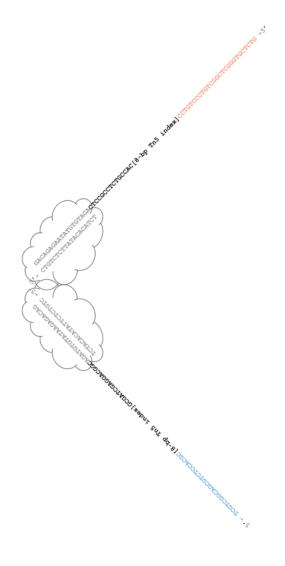
Internally Barcoded Tn5 transposomes

Round 2:

Barcoded PCR primers



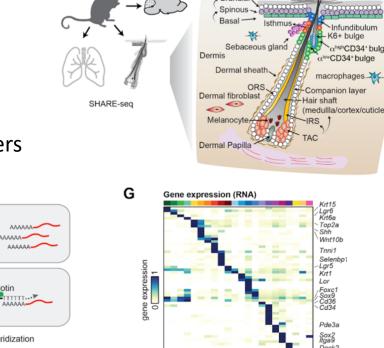
Tn5 barcode

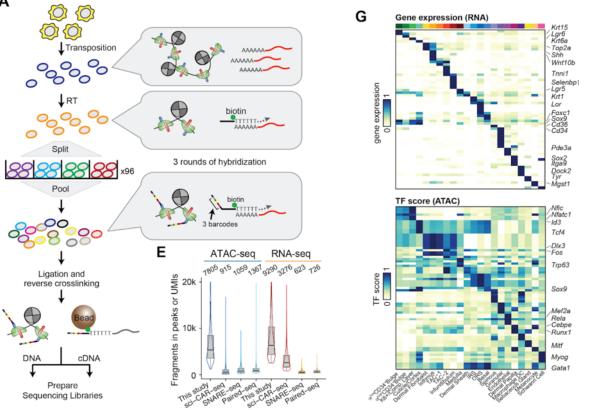


Tn5 barcode

SHARE-Seq

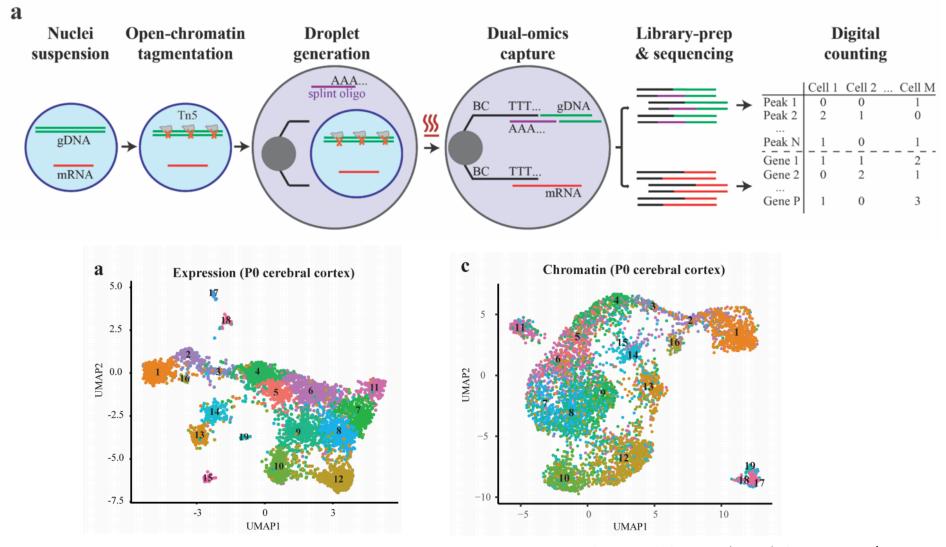
- Same-cell scRNA/ATAC
- Combinatorial split-pool barcoding of adapters





Α

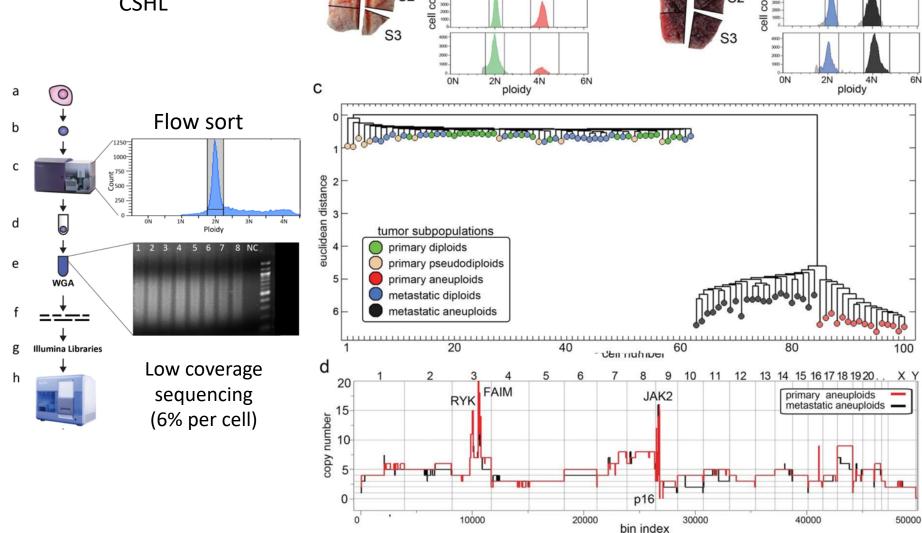
SNARE-seq



Chen et al. bioRxiv (2019) doi:10.1101/692608

Single cell CNV

Nick Navin, Mike Wigler CSHL

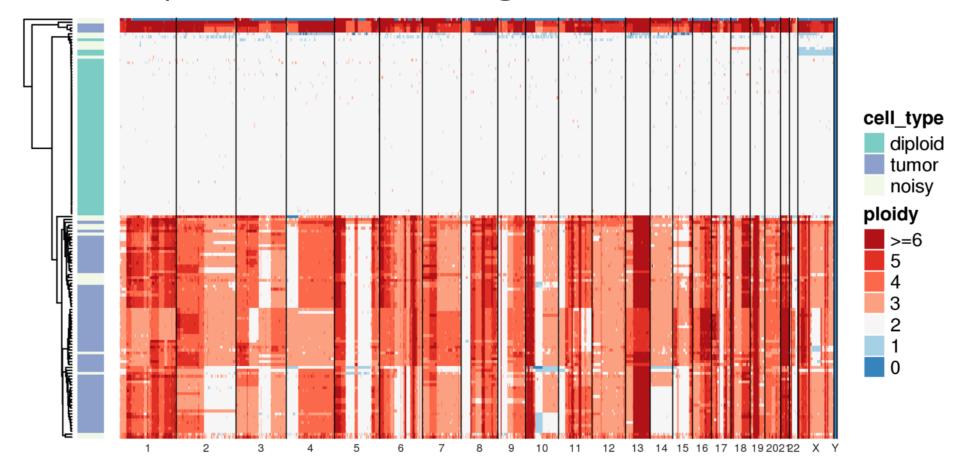


Primary Tumor

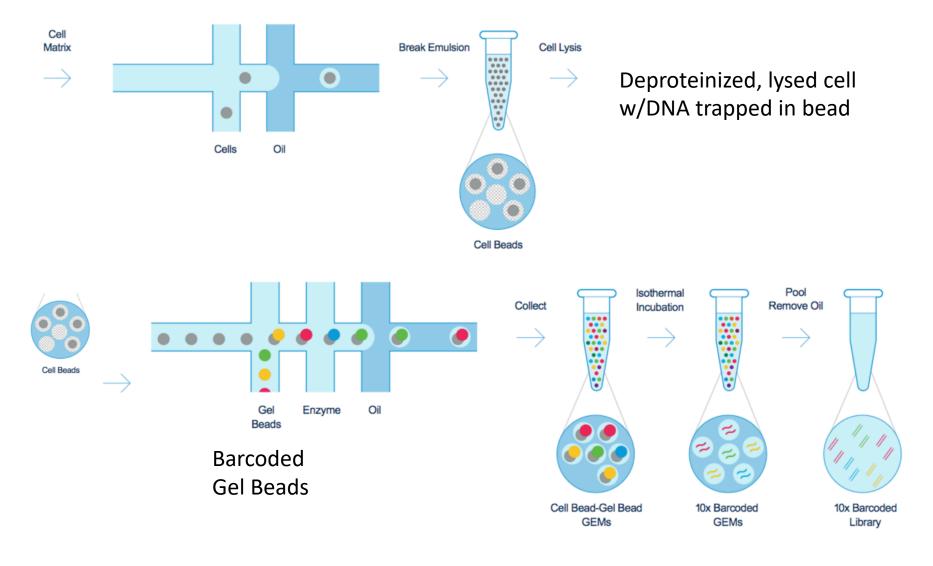
Navin et al. *Nature* (**2011**) Apr 7; 472(7341): 90–94.

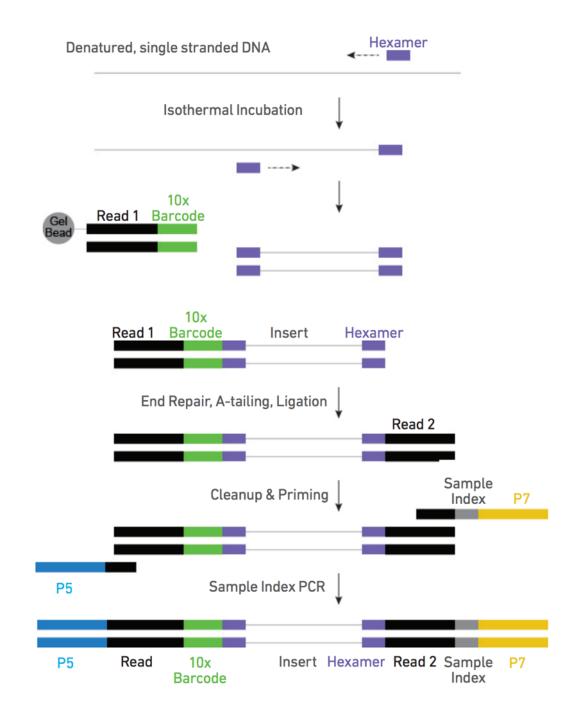
Liver Metastasis

Droplet-based Single Cell CNV



Droplet-based Single Cell CNV





Mission Bio Tapestri

DNA-focused microfluidic platform

For SNV & CNV

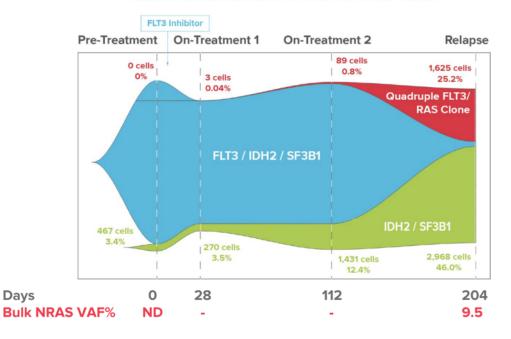
STEP 1. CELL ENCAPSULATION AND PROTEASE DIGESTION Cell Sample Oil Cell Incubation, then Heat Inactivation STEP 2. CELL BARCODING AND TARGET AMPLIFICATION Barcoding Beads and Reagent Mix Cell Lysate Cell Lysate, Barcoding Beads, and Reagent Mix then Library Prep

Mission Bio Tapestri

59 GENES - TUMOR HOTSPOT PANEL							
ABL1	CSF1R	FGFR1	IDH2	MLH1	RB1		
AKT1	CTNNB1	FGFR2	JAK1	MPL	RET		
ALK	DDR2	FGFR3	JAK2	MTOR	SMAD4		
APC	EGFR	FLT3	JAK3	NOTCH1	SMARCB1		
AR	ERBB2	GNA11	KDR	NRAS	SMO		
ATM	ERBB3	GNAQ	KIT	PDGFRA	SRC		
BRAF	ERBB4	GNAS	KRAS	PIK3CA	STK11		
CDH1	ESR1	HNF1A	MAP2K1	PTEN	TP53		
CDK4	EZH2	HRAS	MAP2K2	PTPN11	VHL		
CDKN2A	FBXW7	IDH1	MET	RAF1			

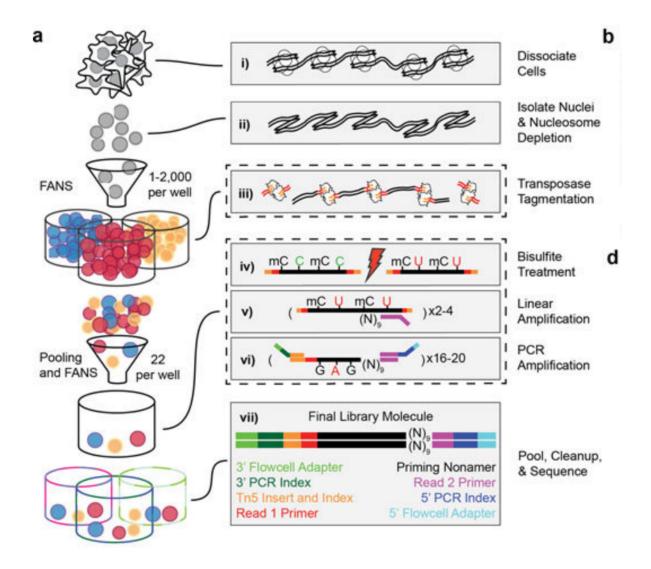
45-GENE MYELOID PANEL						
ASXL1	ERG	KDM6A	NRAS	SMC1A		
ATM	ETV6	KIT	PHF6	SMC3		
BCOR	EZH2	KMT2A	PPM1D	STAG2		
BRAF	FLT3	KRAS	PTEN	STAT3		
CALR	GATA2	MPL	PTPN11	TET2		
CBL	GNAS	MYC	RAD21	TP53		
CHEK2	IDH1	MYD88	RUNX1	U2AF1L5		
CSF3R	IDH2	NF1	SETBP1	WT1		
DNMT3A	JAK2	NPM1	SF3B1	ZRSR2		

Clonal Architecture Resolved Over Time



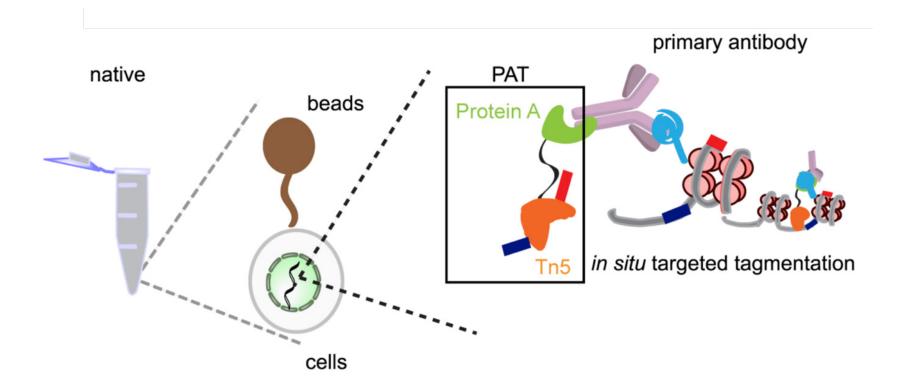
Other Omics

sci-MET

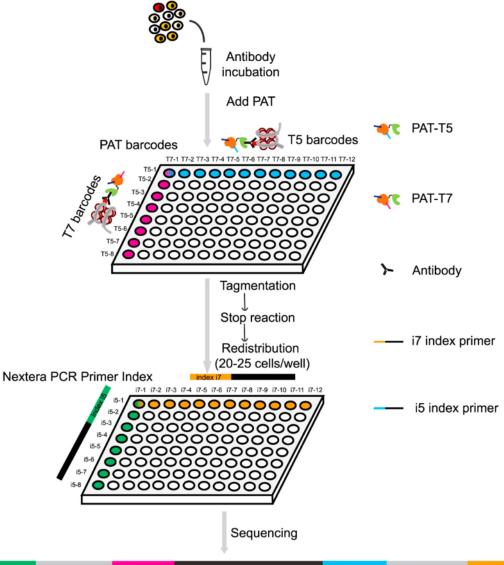


CoBATCH

Transcription factor binding sites in single cells

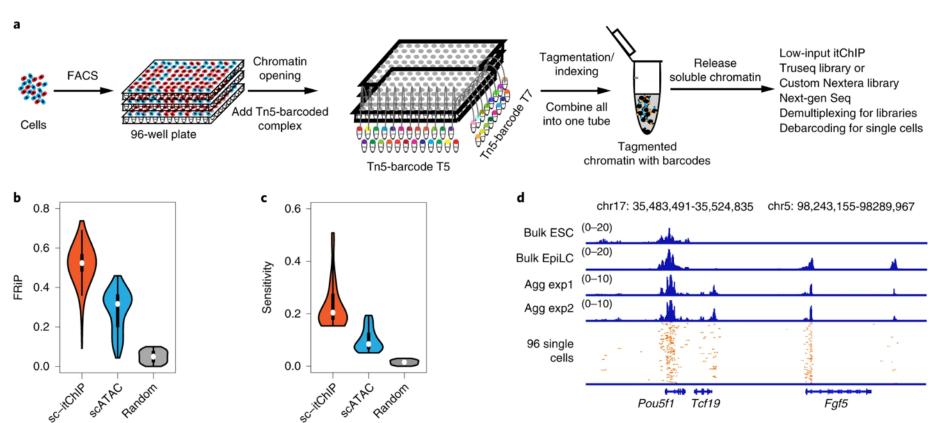


CoBATCH



5 insert T7 i7

Single cell itChIP



Sequencing Costs

	RNA-seq	ATAC-seq	CNV
Reads per Cell	50-100k	50-100k	750k+
Cells per Experiment	2,000 – 10,000	2,000 – 10,000	1,000-2,000
Sequencing Platform Min.	NextSeq HO	NextSeq HO	NovaSeq S1
Cost per Experiment	~\$2,500	~\$2,800	\$12,000

