The application of epigenomic profiling strategies to study cancer and other common diseases

Peter C. Scacheri, PhD

Gertrude Donnelly Hess Professor of Oncology

Department of Genetics & Genome Sciences

Case Western Reserve University School of Medicine

Case Comprehensive Cancer Center

<u>Outline</u>

- Introduction
 - Non-coding regions and the epigenome
 - Techniques for epigenomic profiling
 - Repositories and browsers for epigenomics datasets
 - Data analysis
- Applications of epigenomic profiling (Focus on enhancer elements and cancer)
 - Tumorigenesis
 - Clinical subtyping
 - Metastasis
 - Drug resistance
 - Identification of non-coding driver mutations
 - GWAS
 - Biomarkers
- Opportunities for Precision Oncology

Most	of	th	ne	h	ım	าลเ	n e	gei	no	m	e	is I	ngo	n-coding	g DNA			
		BLCA	BRCA	COAD/RI	GBM	HNSC	KIRC	AML	LUAD	LUSC	NO	UCEC	Pan-Can			BLCA	BRCA	
Transcription		0.0	0.0	0.0	0.0	0.0	52.3	0.0	0.0	0.6	0.0	0.9	6.9	VHL	MAPK signalling	0.0	0.8	4
factor/regulator		1.0	10.6	1.0	0.0	2.0	0.0	0.0	2.6	2.9	0.3	0.4	3.2	GATA3		7.1	2.5	1
		2.0	0.7	3.1	0.7	1.3	1.2	0.5	14.9	6.3	1.0	3.9	2.6	TSHZ3		3.1	7.2	(
		17.4	0.8	2.1	0.3	8.0	1.4	0.0	0.9	4.6	0.3	5.2	2.5	EP300		2.0	0.4	3
		2.0	2.4	1.6	0.0	3.3	0.5	0.5	1.3	0.0	0.3	16.5	2.4	CTCF		2.0	0.1	8
		2.0	1.1	1.6	1.4	2.3	1.2	0.0	4.0	6.9	1.6	8.7	2.3	TAF1		0.0	4.1	2
		4.1	0.9	3.1	2.4	1.3	0.7	0.0	6.6	3.5	1.0	1.7	1.8	TSHZ2		2.0	0.3	2
		1.0	3.3	1.0	0.0	0.7	0.0	9.0	0.4	0.0	0.0	1.3	1.6	RUNX1	PI(3)K signalling	17.4	33.6	5 1
		5.1	0.5	1.0	1.4	1.7	1.0	0.0	3.5	4.6	0.6	3.0	1.5	MECOM		3.1	3.8	
		3.1	2.4	1.0	0.0	0.7	0.0	0.0	4.4	2.9	1.0	1.3	1.4	TBX3		1.0	2.5	é
		1.0	0.5	0.5	0.7	0.7	0.5	0.0	1.8	2.9	0.6	5.2	1.1	SINJA		2.0	1.2	(
		0.0	0.1	1.0	0.7	0.0	0.7	6.0	3.5	2.3	0.0	0.4	1.0	WIII EIEAAD		2.0	0.4	
		2.0	1.7	2.6	1.0	0.0	0.7	0.0	1.8	1.2	0.6	1.3	0.8	EIF4A2	TGE-B signalling	0.0	2.5	
		4.1	1.7	0.0	1.0	0.7	0.0	3.0	0.4	1.0	0.0	1.2	0.8	PHES	r Gr-p signalling	2.0	0.4	2
		1.0	21	0.0	0.0	0.0	0.0	1.0	0.9	0.6	0.0	0.4	0.0	CREB		0.0	0.4	
		0.0	0.1	4.2	1.0	0.7	0.7	0.0	1.3	0.6	0.0	0.4	0.7	SOX9		1.0	0.5	
		8.2	0.1	3.6	0.0	0.3	0.0	0.0	0.4	0.0	0.3	0.4	0.6	ELF3		1.0	0.5	-
		2.0	0.9	0.0	0.7	0.7	0.0	0.0	0.9	1.7	0.0	0.0	0.6	VEZF1	Wnt/B-catenin	4.1	0.5	8
		0.0	0.0	0.0	0.0	0.0	0.2	6.5	0.0	0.6	0.0	0.0	0.5	CEBPA	signalling	2.0	0.1	4
		1.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.6	4.8	0.5	FOXA2	Signaling	3.1	0.1	3
Histone modifier		24.5	6.4	2.6	3.1	7.3	3.6	0.5	18.4	15.5	1.9	5.2	6.6	MLL3		2.0	1.1	(
		25.5	1.6	1.6	1.7	17.9	3.1	0.5	8.8	20.1	0.6	8.3	5.9	MLL2		0.0	0.0	(
		27.6	2.0	5.7	0.7	3.0	2.9	0.5	6.1	6.3	1.0	30.0	5.4	ARID1A	Histone	1.0	0.4	1
		6.1	0.4	0.0	0.7	2.3	32.9	0.0	1.8	3.5	0.3	2.6	5.4	PBRM1		0.0	0.0	(
		0.4	10	0.0		~ ~				0.0	10	0.0	0.0	05700		10	0.0	

The Epigenome

Profiling Techniques for DNA methylation

Technique		Method	Advantages	Limitations
Whole-Geno (WGBS)	ome Bisulfite Sequencing	Bisulfite converted DNA is amplified and sequenced	Genome-wide, single nucleotide resolution	Costly and computationally intensive
Reduced-Re Sequencing	epresentation Bisulfite (RRBS)	Methylation-insensitive restriction enzymes digest DNA, enriching for CpG regions	Cheaper than WGBS with relatively high coverage	Enzymatic digestion covers most but not all CpG sites
Pyrosequen	cing	DNA is bisulfite converted, amplified, with the ratio of C/T nucleotides measured	Genome-wide or targeted, single nucleotide resolution. Allele-specific primers	Relatively expensive
Methylated (MeDip)	DNA Immunoprecipitation	Methylated DNA is enriched by immunoprecipitation followed by sequencing or microarray analysis	Random fragmentation by sonication avoids restriction enzyme bias	Varying CpG density can confound methylation estimates
Methylation Enzyme Sec or Methyl-se	Sensitive Restriction quencing (MSRE/MRE-Seq eq)	Unmethylated DNA is restriction enzyme digested while methylated DNA is amplified	No bisulfite conversion bias	DNA may be partially digested, limited coverage
Combined E (COBRA)	Bisulfite Restriction Analysis	Bisulfite converted DNA is amplified and restriction enzyme digested	Simple, fast, inexpensive, works on FFPE-treated DNA	DNA may be partially digested, limited coverage
Methylation	Specific PCR	Bisulfite converted DNA is amplified with methylation specific primers	Simple and inexpensive	Purely qualitative
High Resolu	tion Melt Analysis (HRM)	Bisulfite converted DNA is amplified by q-PCR	Most sensitive method for determining methylation at a specific region	Single base resolution not possible
Illumina Met Microarray (hylationEPIC BeadChip previously 450k, 27k)	Bisulfite (or oxidized + bisulfite) converted DNA is interrogated on a microarray chip	Relatively simple and inexpensive. Extremely popular	Data has limited coverage and requires pre-processing
Global DNA	Methylation	Methods include LINE1, Alu, LUMA, HPLC-UV	Relatively inexpensive	Does not identify differentially methylated regions
Tet-assisted (TAB-seq)	Bisulfite Sequencing	5hmC is protected then oxidized to 5caC then uracil by TET	Differentiation between 5mC and 5hmC at single base resolution	Sensitivity and specificity depends on sequencing depth
Oxidative Bi	sulfite Sequencing (OxBis)	DNA is oxidized then bisulfite converted to 5fC and subsequently uracil	Quantitative genome-wide coverage	Bias to regions of low 5mC. Must be performed in parallel with bisulfite techniques
APOBEC-co sequencing	oupled epigenetic (ACE-seq)	Non-destructive DNA deaminase enzymes discriminate between 5hmC and 5mC	Genome-wide, single nucleotide resolution. Very low DNA input required	Not yet extensively tested
Hydroxymet Immunopred	hylated DNA cipitation (hMeDIP)	Immunoprecipitation and sequencing of hydroxymethylated DNA	Simple and inexpensive	Only semi quantitative and bias to regions of low 5hmC

Cazaly et al., Front Pharm 2019

Profiling techniques for histones and chromatin accessibility

Technique	Method	Advantages	Limitations
Chromatin Immunoprecipitation (ChIP)	Couples highly specific antibodies for DNA-binding proteins with sequencing, microarrays or PCR	Detect DNA associated proteins and histone modifications	Requires intact cells and chromatin
Digital DNase	Enzymes digest nuclease-accessible regions, indicating open chromatin	Maps both nucleosomes and non-histone proteins	High sequencing depth required. Potential actin contamination.
NOMe-seq	Single-molecule, high-resolution nucleosome positioning assay	Maps both DNA methylation and nucleosomes at high resolution	Relies on presence of CpG residues
Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)	Measures chromatin accessibility based on Tn5 transposase activity. Maps nucleosomes and non-histone proteins	Simple, fast, low input of cells with single nucleotide resolution	Distance between binding sites may bias results
Chromosome Conformation Capture (3C, 4C, 5C, Hi-C) & Hi-ChIP	Assess spatial organization of chromatin in a cell	Various modified versions	Often lack genome-wide, single nucleotide resolution
CUT&RUN (Cleavage Under Targets and Release Using Nuclease)	antibody-targeted controlled cleavage by micrococcal nuclease releases specific protein-DNA complexes into the supernatant for paired-end DNA sequencing.	In situ, simple, fast, low input, Less sequencing depth required	Need good antibodies

Lots of methods for processing datasets

ENCODE Data Encyclopedia Materials & Methods Help

Chromatin Immunoprecipitation pipelines

Transcription factor ChIP-seq (TF ChIP-seq) specifically looks at proteins, such as sequence-specific transcription factors, which are thought to associate with specific DNA sequences to influence the rate of transcription. Histone ChIP-seq is sensitive to the histone content of chromatin, specifically to the incorporation of particular post-translational histone modifications in chromatin. The pipelines take input fastqs from replicated experiments and controls as well as reference fasta's for the initial read mapping. Both pipelines share the same mapping steps, but differ in the way the signal and peaks are called and in the subsequent statistical treatment of replicates.

- ChIP-seq Mapping Pipeline
- · Histone ChIP-seq Pipelines
 - Replicated
 - Unreplicated
 - Data Standards and Documentation

Transcription Factor ChIP-seq Pipeline

- Replicated
- Unreplicated
- Data Standards and Documentation

DNA accessibility pipelines

DNA accessibility assays such as DNase-seq, ATAC-seq, FAIRE-seq, and MNase-seq are common assays that support the goals of the ENCODE project. DNase-seq maps DNase I hypersensitive sites, which is considered to be an accurate method of identifying regulatory elements. ATAC-seq (Assay for Transposase Accessible Chromatin with high-throughput sequencing) is viewed as an alternative to DNase-seq and MNase-seq; it probes DNA accessibility with hyperactive Tn5 transposase, which inserts sequencing dapters into accessible regions of chromatin.

- DNase-seq Pipelines
 - Single-ended
 - Paired-ended
 - Data Standards and Documentation
- ATAC-seq Pipeline
 - · Data Standards and Documentation

DNA methylation pipeline

Whole-genome bisulfite sequencing (WGBS) is used to discover methylation patterns at single-base resolution. Bisulfite treatment is used to convert unmethylated cytosines into uracils, but leaves methylated cytosines unchanged. After mapping bisulfite sequencing reads against a C-->U transformed genome, this pipeline can extract the CpG, CGH and CHH methylation patterns genome-wide.

- WGBS Pipelines
 - Single-ended
 - · Paired-ended
 - Data Standards and Documentation

Epigenetic data repositories and browsers

Consortia and resources	Data availability	URLs		
The International Human Epigenome Consortium (IHEC)	Reference epigenomes generated by NIH Roadmap, ENCODE, CEEHRC, BLUEPRINT, DEEP, AMED/CREST, and KEP	IHEC Data Portal http://epigenomesportal.ca/ihec		
VIH Roadmap Epigenomics	Maps of histone modifications, chromatin accessibility, DNA methylation and mRNA Expression in stem cells and primary <i>ex vivo</i> human tissues	VizHub http://vizhub.wustl.edu		
Canadian Epigenetics, Environment and Health Research Consortium (CEEHRC) Network	Reference epigenomes including histone modifications, DNA methylation, mRNA and miRNA of human cancer and normal cells	CEEHRC Data http://www.epigenomes.ca/site-data Software Tools http://www.epigenomes.ca/tools-and-software		
3LUEPRINT Epigenome	Reference epigenomes of human normal and malignant hematopoietic cells	BLUEPRINT Portal http://blueprint-data.bsc.es		
The German epigenome programme (DEEP)	Reference epigenomes of human cells and tissues in normal and complex disease states	DEEP Data Portal http://deep.dkfz.de		
HEC Team Japan (AMED-CREST)	Reference epigenomes of human gastrointestinal epithelial cells, vascular endothelial cells and cells of reproductive organs	IHEC Data Portal http://epigenomesportal.ca/ihec		
Korea Epigenome Project (KEP)	Reference epigenome map for common complex diseases	IHEC Data Portal http://epigenomesportal.ca/ihec		
JeepBlue	Epigenomic data server for storing and working with genomic and epigenomic data. Collection of over 30,000 experiment files from the main epigenome mapping projects available. Uploading own data allowed	DeepBlue server http://deepblue.mpi-inf.mpg.de		
Allelic Epigenome Project	Allelic DNA methylome, histone modifications, and transcriptome in human cells and tissues	Genboree http: //genboree.org/genboreeKB/projects/allelic-epigenome		
ЗТЕх	Genotype and expression profiles in different tissues enabling eQTL studies	GTEx Portal http://www.gtexportal.org		
3RAINEAC	Brain eQTL Almanac provides genotype and expression profile across 10 brain regions	BRAINEAC http://braineac.org		
ИQTLdb	Methylation and genotype data on mother-child pairs providing access to meQTL mapping across five different stages of life	mQTL Database http://www.mqtldb.org		
etal brain meQTLs	Epigenome-wide significant meQTLs observed in fetal brain	Fetal Brain meQTL http://epigenetics.essex.ac.uk/mQTL		
² ancan-meQTL	Database of <i>cis</i> - and <i>trans</i> - meQTLs across 23 cancer types from The Cancer Genome Atlas	Pancan-meQTL http://bioinfo.life.hust.edu.cn/Pancan-meQTL		
Epigenome Browser	UCSC genome browser with tracks from ENCODE project	UCSC Epigenome Browser http://www.epigenomebrowser.org		
NashU Epigenome Browser	Web browser with tracks from ENCODE and Roadmap Epigenomics projects	WashU Epigenome Browser http://epigenomegateway.wustl.edu		
Ensembl	ENCODE data used in the regulatory build	Ensembl ENCODE https://www.ensembl.org		

Cazaly et al., Front Pharm 2019

The Epigenome and Gene Enhancer Elements

Karnuta, Jaret M., and Peter C. Scacheri. "Enhancers: Bridging the Gap between Gene Control and Human Disease." Human Molecular Genetics, 2018.

Superenhancers

"Super enhancers are typically an order of magnitude larger than typical enhancers in size, have higher transcription factor density, and greater ability for transcriptional activation."

Genome-wide identification of active enhancer elements based on signature chromatin features

"Enhanceropathies"

Karnuta and Scacheri, *HMG* 2018 Scacheri and Scacheri, *Curr Opin Pediatr* 2015 Corradin and Scacheri, *Genome Med* 2014

Studying the epigenome can provide insights into various aspects of cancer

- Tumorigenesis
- Clinical subtyping
- Metastasis
- Drug resistance
- Identification of non-coding driver mutations
- GWAS
- Biomarkers

Enhancers alterations in cancer

Akhtar-Zaidi et al, *Science* 2012 Cohen et al, *Nat Comm* 2017

Recurrent enhancer alterations in CRC

Studying the epigenome can provide insights into various aspects of cancer

- Tumorigenesis
- Clinical subtyping
- Metastasis
- Drug resistance
- Identification of non-coding driver mutations
- GWAS
- Biomarkers

Recurrent enhancer alterations in CRC

samples

Conhanatio agof 0.0075

Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling Nature 2018

Stephen C. Mack^{1,2,3,4}*, Kristian W. Pajtler^{5,6,7}*, Lukas Chavez^{5,6,8}*, Konstantin Okonechnikov^{5,6}, Kelsey C. Bertrand^{1,2,9}, Xiuxing Wang^{3,4,10}, Serap Erkek^{5,6,11}, Alexander Federation¹², Anne Song^{3,4}, Christine Lee^{3,4}, Xin Wang¹³, Laura McDonald¹³, James J. Morrow¹⁴, Alina Saiakhova¹⁴, Patrick Sin-Chan¹³, Qiulian Wu^{3,4,10}, Kulandaimanuvel Antony Michaelraj¹³, Tvler E. Miller^{3,4,15}. Christopher G. Hubert^{3,4}. Marina Rvzhova¹⁶. Livia Garzia¹³. Laura Donovan¹³. Stephen Dombrowski^{3,4,17}.

Enhancer changes mediating acquisition of traits

Drug resistance

Predisposition

Nature Medicine 2018

es f.= 0.9975 samples Cophenetic coef.= 0.9705

Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis

Cell 2017

Jae-Seok Roe,^{1,9} Chang-II Hwang,^{1,2,9} Tim D.D. Somerville,¹ Joseph P. Milazzo,¹ Eun Jung Lee,^{1,2} Brandon Da Silva,^{1,2} Laura Maiorino,¹ Hervé Tiriac,^{1,2} C. Megan Young,^{1,2} Koji Miyabayashi,^{1,2} Dea Filippini,^{1,2} Brianna Creighton,^{1,2} Richard A. Burkhart,³ Jonathan M. Buscaglia,⁴ Edward J. Kim,⁵ Jean L. Grem,⁶ Audrey J. Lazenby,⁷ James A. Grunkemeyer,⁸ Michael A. Hollingsworth,⁸ Paul M. Grandgenett,⁸ Mikala Egeblad,¹ Youngkyu Park,^{1,2} David A. Tuveson,^{1,2,*} and Christopher R. Vakoc^{1,10,*}

es f.= 0.9702

samples

Positively selected enhancer elements endow osteosarcoma cells with metastatic competence

James J Morrow^{1,2}, Ian Bayles², Alister P W Funnell³, Tyler E Miller¹, Alina Saiakhova², Michael M Lizardo⁴, Cynthia F Bartels², Maaike Y Kapteijn⁵, Stevephen Hung², Arnulfo Mendoza⁴, Gursimran Dhillon², Daniel R Chee⁶, Jay T Myers⁷, Frederick Allen¹, Marco Gambarotti⁸, Alberto Righi⁸, Analisa DiFeo⁹, Brian P Rubin¹⁰, Alex Y Huang^{1,7}, Paul S Meltzer¹¹, Lee J Helman⁴, Piero Picci⁸, Henri H Versteeg⁵, John A Stamatoyannopoulos³, Chand Khanna^{4,12} & Peter C Scacheri^{2,8}

es

(

Metastatic tumors show extensive enhancer alterations (Met-VELs)

Patient Tumors

x10

Morrow et al, Nature Med 2018

Met-VEL genes switch on/off in the lung microenvironment

Model of enhancer function in metastasis

Morrow et al, Nature Med 2018

Metastasis is dependent on the F3 enhancer

Morrow et al, Nature Med 2018

es f.= 0.9975 samples Cophenetic coef.= 0.9705

Genome-wide reprogramming of the chromatin landscape underlies endocrine therapy resistance in breast cancer

Luca Magnani^{a,1}, Alexander Stoeck^b, Xiaoyang Zhang^a, András Lánczky^c, Anne C. Mirabella^{a,2}, Tian-Li Wang^b, Balázs Gyorffy^{c,3}, and Mathieu Lupien^{a,d,e,f,3}

samples

Genome and Epigenome

Cancer Research

Chemotherapy-Induced Distal Enhancers Drive Transcriptional Programs to Maintain the Chemoresistant State in Ovarian Cancer

Stephen Shang¹, Jiekun Yang¹, Amir A. Jazaeri², Alexander James Duval¹, Turan Tufan¹, Natasha Lopes Fischer¹, Mouadh Benamar^{1,3}, Fadila Guessous³, Inyoung Lee¹, Robert M. Campbell⁴, Philip J. Ebert⁴, Tarek Abbas^{1,3}, Charles N. Landen⁵, Analisa Difeo⁶, Peter C. Scacheri⁶, and Mazhar Adli¹

Studying the epigenome can provide insights into various aspects of cancer

- Tumorigenesis
- Clinical subtyping
- Metastasis
- Drug resistance
- Identification of non-coding driver mutations
- GWAS
- Biomarkers

Search for cancer driver mutations in the human genome

Kandoth et al, Nature (2013)

Challenges with finding mutations in non-coding regions

- Mutation rates vary between cancers
- Mutation rates are influenced by chromatin states
 - Active chromatin low mutation rate
 - Inactive chromatin high mutation rate
- Epigenome varies between tumors
- Cell type of origin is unknown or unavailable

Cancer driver mutations in noncoding regions

Beroukhim, R. et al. 2017 Mansour et al, *Science* 2014

Common workflow for detecting candidate drivers

Recurrent driver mutations in noncoding regions are rare

New Results

Discovery and characterization of coding and non-coding driver mutations in more than 2,500 whole cancer genomes

"Perhaps the most striking finding is the relative paucity of point mutations driving cancer in non-coding genes and regulatory elements."

Mark P Hamilton, Chen Hong, 🖤 Andre Kanles, Joungwook Kim, 🖤 Kjong-van Lehmann,

💿 Todd Andrew A Johnson, 💿 Abdullah Kahraman, Keunchil Park, 💿 Gordon Saksena, 💿 Lina Sieverling,

💿 Nicholas A Sinnott-Armstrong, Peter J Campbell, 💿 Asger Hobolth, 💿 Manolis Kellis, Michael S Lawrence,

💿 Ben Raphael, 💿 Mark A Rubin, Chris Sander, 💿 Lincoln Stein, Josh Stuart, 💿 Tatsuhiko Tsunoda,

💿 David A Wheeler, 💿 Rory Johnson, Jüri Reimand, 💿 Mark B Gerstein, 💿 Ekta Khurana,

💿 Nuria Lopez-Bigas, 💿 Inigo Martincorena, 💿 Jakob Skou Skou Pedersen, 💿 Gad Getz,

Noncoding somatic and inherited single-nucleotide variants converge to promote *ESR1* expression in breast cancer

Swneke D Bailey^{1,2,11}, Kinjal Desai^{3,11}, Ken J Kron^{1,2}, Parisa Mazrooei^{1,2}, Nicholas A Sinnott-Armstrong⁴, Aislinn E Treloar^{1,2}, Mark Dowar¹, Kelsie L Thu⁵, David W Cescon^{1,5}, Jennifer Silvester⁵, S Y Cindy Yang^{1,2}, Xue Wu^{1,10}, Rossanna C Pezo¹, Benjamin Haibe-Kains^{1,2,6}, Tak W Mak^{2,5}, Philippe L Bedard^{1,7}, Trevor J Pugh^{1,2}, Richard C Sallari⁸ & Mathieu Lupien^{1,2,9}

Mismatch repair-signature mutations activate gene enhancers across human colorectal cancer epigenomes

eLife 2019

Stevephen Hung¹, Alina Saiakhova¹, Zachary J Faber¹, Cynthia F Bartels¹, Devin Neu¹, Ian Bayles¹, Evelyn Ojo², Ellen S Hong¹, W Dean Pontius³, Andrew R Morton¹, Ruifu Liu², Matthew F Kalady^{3,4,5}, David N Wald^{2,6}, Sanford Markowitz^{1,6,7}, Peter C Scacheri^{1,6*}

Studying the epigenome can provide insights into various aspects of cancer

- Tumorigenesis
- Clinical subtyping
- Metastasis
- Drug resistance
- Identification of non-coding driver mutations
- GWAS
- Biomarkers

GWAS: Genome Wide Association Studies

GWAS: Genome Wide Association Studies

- Thousands of associations
- Most SNPs lie in non-coding regions

Transcriptional enhancer elements are hotspots for SNPs that predispose to disease

Of the known heritability estimates from GWAS, variants in regulatory elements are estimated to account for 79%.

Gusev et al. AJHG 2014

Epigenomic enrichments of genetic variants associated with diverse traits.

Roadmap Epigenomics Consortium et al. Nature 518, 317-330 (2015) doi:10.1038/nature14248

GWAS risk SNPs often lie in enhancer clusters

Hnisz et al, Cell 2013 Parker, Stitzel et al, PNAS 2013 Corradin et al. Genome Res 2014 Pasquali et al, Nat. Gen 2014

Constituents of enhancer clusters collude to regulate genes

May be more than 1 causal SNP at a locus!

Regulatory circuitry at GWAS loci extends beyond LD blocks

"Outside variants" – SNPs inherited independently of GWAS linked variants that are within the regulatory circuit of the same gene target

Corradin et al, *Nat Genet* 2016 Factor et al, *Cell* 2020

The Regulatory Circuitry of Gene Expression

SNPs that lie outside the GWAS-associated region, but are part of the same regulatory circuit can influence disease risk

Studying the epigenome can provide insights into various aspects of cancer

- Tumorigenesis
- Clinical subtyping
- Metastasis
- Drug resistance
- Identification of non-coding driver mutations
- GWAS
- Biomarkers

Sensitive tumour detection and classification using plasma cell-free DNA methylomes

Shu Yi Shen^{1,12}, Rajat Singhania^{1,12}, Gordon Fehringer^{2,12}, Ankur Chakravarthy^{1,12}, Michael H. A. Roehrl^{1,3,4}, Dianne Chadwick¹, Philip C. Zuzarte⁵, Ayelet Borgida², Ting Ting Wang^{1,4}, Tiantian Li¹, Olena Kis¹, Zhen Zhao¹, Anna Spreafico¹, Tiago da Silva Medina¹, Yadon Wang¹, David Roulois^{1,6}, Ilias Ettayebi^{1,4}, Zhuo Chen¹, Signy Chow¹, Tracy Murphy¹, Andrea Arruda¹, Grainne M. O'Kane¹, Jessica Liu⁴, Mark Mansour⁴, John D. McPherson⁷, Catherine O'Brien¹, Natasha Leighl¹, Philippe L. Bedard¹, Neil Fleshner¹, Geoffrey Liu^{1,4,8}, Mark D. Minden¹, Steven Gallinger^{9,10}, Anna Goldenberg¹¹, Trevor J. Pugh^{1,4}, Michael M. Hoffman^{1,4,11}, Scott V. Bratman^{1,4}, Rayjean J. Hung^{2,8}* & Daniel D. De Carvalho^{1,4}*

Studying the epigenome can provide insights into various aspects of cancer

- Tumorigenesis
- Clinical subtyping
- Metastasis
- Drug resistance
- Identification of non-coding driver mutations
- GWAS
- Biomarkers
- One final story

Functional enhancers on circular extrachromosomal DNA (ecDNA)

DNA FISH

Morton et al, Cell 2019

Electron Micrograph

Wu et al, Nature 2019

Extrachromosomal DNA (ecDNA) AKA: "double minutes"

- Found in many forms of cancer.
 - Particularly prevalent in aggressive cancers notoriously difficult to treat
- Massive focal DNA amplifications
 - 10-100s of copies per cell
 - 0.5 2.5 Million base pairs in size
- Complex structures → can incorporate multiple oncogenes from different chromosomes
 - Extensive sub-clonality
- Can hop back into the genome and remodel it
- Provides a means for rapid tumor evolution and emergence of drug resistance phenotypes

DNA FISH

Selection of enhancers on ecDNA

The "Onco-locus"

Oncogene + enhancers + other selected elements contributing to fitness

Precision cancer medicine – A vision for an epigenomics based approach

• Leverage knowledge about the genetic makeup of cancer for precisely targeted therapy.

- Some success
- Most patients don't meet the clinical criteria

Precision cancer medicine – An epigenomics based approach

Identification of markers for prognosis, tumor behavior, and treatment response