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Most of the human genome is non-coding DNA

2% genes



The Epigenome

The two main components
of the epigenetic code

DNA methylation

Methyl marks added to certain
DNA bases repress gene activity.
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Histone tails

Histone modification

A combination of different
molecules can attach to the ‘tails’
of proteins called histones. These
alter the activity of the DNA
wrapped around them.

Histones
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Profiling Techniques for DNA methylation

—

Technique

Whole-Genome Bisulfite Sequencing
(WGBS)

Reduced-Representation Bisulfite
Sequencing (RRBS)

Pyrosequencing

Methylated DNA Immunoprecipitation
(MeDip)

Methylation Sensitive Restriction
Enzyme Sequencing (MSRE/MRE-Seq
or Methyl-seq)

Combined Bisulfite Restriction Analysis
(COBRA)

Methylation Specific PCR

High Resolution Melt Analysis (HRM)

lllumina MethylationEPIC BeadChip
Microarray (previously 450k, 27k)

Global DNA Methylation
Tet-assisted Bisulfite Sequencing

(TAB-seq)
Oxidative Bisulfite Sequencing (OxBis)

APOBEC-coupled epigenetic
sequencing (ACE-seq)

Hydroxymethylated DNA
Immunoprecipitation (hMeDIP)

Method

Bisulfite converted DNA is amplified
and sequenced
Methylation-insensitive restriction
enzymes digest DNA, enriching for
CpG regions

DNA is bisulfite converted, amplified,
with the ratio of C/T nucleotides
measured

Methylated DNA is enriched by
immunoprecipitation followed by
sequencing or microarray analysis
Unmethylated DNA is restriction
enzyme digested while methylated DNA
is amplified

Bisulfite converted DNA is amplified
and restriction enzyme digested
Bisulfite converted DNA is amplified
with methylation specific primers
Bisulfite converted DNA is amplified by
g-PCR

Bisulfite (or oxidized + bisulfite)
converted DNA is interrogated on a
microarray chip

Methods include LINE1, Alu, LUMA,
HPLC-UV

5hmC is protected then oxidized to
5caC then uracil by TET

DNA is oxidized then bisulfite converted
to 5fC and subsequently uracil

Non-destructive DNA deaminase
enzymes discriminate between ShmC
and 5mC

Immunoprecipitation and sequencing of
hydroxymethylated DNA

Advantages

Genome-wide, single nucleotide
resolution

Cheaper than WGBS with relatively high
coverage

Genome-wide or targeted, single
nucleotide resolution. Allele-specific
primers

Random fragmentation by sonication
avoids restriction enzyme bias

No bisulfite conversion bias

Simple, fast, inexpensive, works on
FFPE-treated DNA

Simple and inexpensive

Most sensitive method for determining
methylation at a specific region

Relatively simple and inexpensive.
Extremely popular

Relatively inexpensive

Differentiation between 5mC and 5hmC

at single base resolution
Quantitative genome-wide coverage

Genome-wide, single nucleotide
resolution. Very low DNA input required

Simple and inexpensive

Limitations
Costly and computationally intensive

Enzymatic digestion covers most but
not all CpG sites

Relatively expensive

Varying CpG density can confound
methylation estimates

DNA may be partially digested, limited
coverage

DNA may be partially digested, limited
coverage
Purely qualitative

Single base resolution not possible

Data has limited coverage and requires
pre-processing

Does not identify differentially
methylated regions

Sensitivity and specificity depends on
sequencing depth

Bias to regions of low 5mC. Must be
performed in parallel with bisulfite
techniques

Not yet extensively tested

Only semi quantitative and bias to
regions of low 5hmC

Cazaly et al., Front Pharm 2019



Profiling techniques for histones and
chromatin accessibility

Technique
‘ Chromatin Immunoprecipitation (ChIP)

Digital DNase
NOMe-seq

‘ Assay for Transposase-Accessible
Chromatin using sequencing

(ATAC-seq)
‘ Chromosome Conformation Capture

CUT&RUN
(Cleavage Under Targets and
Release Using Nuclease )

Method

Couples highly specific antibodies for
DNA-binding proteins with sequencing,
microarrays or PCR

Enzymes digest nuclease-accessible
regions, indicating open chromatin

Single-molecule, high-resolution
nucleosome positioning assay

Measures chromatin accessibility based
on Tn5 transposase activity. Maps
nucleosomes and non-histone proteins

Assess spatial organization of
chromatin in a cell

antibody-targeted controlled cleavage by
micrococcal nuclease releases specific
protein-DNA complexes into the supernatant
for paired-end DNA sequencing.

Advantages

Detect DNA associated proteins and
histone modifications

Maps both nucleosomes and
non-histone proteins

Maps both DNA methylation and
nucleosomes at high resolution

Simple, fast, low input of cells with
single nucleotide resolution

Various modified versions

In situ, simple, fast, low input,
Less sequencing depth required

Limitations

Requires intact cells and chromatin

High sequencing depth required.
Potential actin contamination.
Relies on presence of CpG residues

Distance between binding sites may
bias results

Often lack genome-wide, single
nucleotide resolution

Need good antibodies

Cazaly et al., Front Pharm 2019



Lots of methods for processing datasets



Epigenetic data
repositories
and browsers

Consortia and resources

The International Human Epigenome

Consortium (IHEC)

NIH Roadmap Epigenomics

Canadian Epigenetics, Environment and Health
Research Consortium (CEEHRC) Network

BLUEPRINT Epigenome

The German epigenome programme (DEEP)

IHEC Team Japan (AMED-CREST)

Korea Epigenome Project (KEP)

DeepBlue

Allelic Epigenome Project

GTEX

BRAINEAC

MQTLdb

Fetal brain meQTLs

Pancan-meQTL

Epigenome Browser

WashU Epigenome Browser

Ensembl
RMBase

Data availability

Reference epigenomes generated by NIH Roadmap,
ENCODE, CEEHRC, BLUEPRINT, DEEP,
AMED/CREST, and KEP

Maps of histone modifications, chromatin accessibility,
DNA methylation and mRNA Expression in stem cells
and primary ex vivo human tissues

Reference epigenomes including histone modifications,
DNA methylation, mRNA and miRNA of human cancer
and normal cells

Reference epigenomes of human normal and malignant
hematopoietic cells

Reference epigenomes of human cells and tissues in
normal and complex disease states

Reference epigenomes of human gastrointestinal
epithelial cells, vascular endothelial cells and cells of
reproductive organs

Reference epigenome map for common complex
diseases

Epigenomic data server for storing and working with
genomic and epigenomic data. Collection of over
30,000 experiment files from the main epigenome
mapping projects available. Uploading own data
allowed

Allelic DNA methylome, histone medifications, and
transcriptome in human cells and tissues

Genotype and expression profiles in different tissues
enabling eQTL studies

Brain eQTL Almanac provides genotype and expression
profile across 10 brain regions

Methylation and genotype data on mother-child pairs
providing access to meQTL mapping across five
different stages of life

Epigenome-wide significant meQTLs observed in fetal
brain

Database of cis- and trans- meQTLs across 23 cancer
types from The Cancer Genome Atlas

UCSC genome browser with tracks from ENCODE
project

Web browser with tracks from ENCODE and Roadmap
Epigenomics projects

ENCODE data used in the regulatory build

Database listing over 100 RNA modifications

URLs

IHEC Data Portal http://epigenomesportal.ca/ihec

VizHub http:/Nvizhub.wustl.edu

CEEHRC Data http://www.epigenomes.ca/site-data
Software Tools
http://www.epigenomes.ca/tools-and- software
BLUEPRINT Portal http://blueprint-data.bsc.es

DEEP Data Portal http://deep.dkfz.de

IHEC Data Portal http://epigenomesportal.ca/ihec

IHEC Data Portal http://epigenomesportal.ca/ihec

DeepBlue server http://deepblue.mpi-inf.mpg.de

Genboree http:
//genboree.org/genboreeKB/projects/allelic-epigenome

GTEX Portal http://www.gtexportal.org
BRAINEAC http://braineac.org

mQTL Database http://www.mqtldb.org

Fetal Brain meQTL
http://epigenetics.essex.ac.uk/mQTL

Pancan-meQTL
http://bioinfo.life.hust.edu.cn/Pancan-meQTL

UCSC Epigenome Browser
http://www.epigenomebrowser.org

WashU Epigenome Browser
http://epigenomegateway.wustl.edu

Ensembl ENCODE https://www.ensembl.org
http://rna.sysu.edu.cn/rmbase/

Cazaly et al., Front Pharm 2019



The Epigenome and Gene Enhancer Elements

Karnuta, Jaret M., and Peter C. Scacheri. “Enhancers: Bridging the Gap between Gene Control and Human Disease.” Human Molecular Genetics, 2018.



Superenhancers
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“Super enhancers are typically an order of magnitude larger than typical enhancers in size,
have higher transcription factor density, and greater ability for transcriptional activation.”

Evan et al, CCR 2017



Genome-wide identification of active enhancer elements based on signature
chromatin features

[loNase-seq [l H3K27ac ChiP-seq [l H3K4me1 ChiIP-seq

Lmduillm--mbmh .
. . DHS
I ..... A.LIA..JL.LM.*. . JL TR H3K27ac
ILLMLMJ._L.JLLLL-. g H3K4mel
o
|_ A F
5

l- AM-A.JA.L;..._ 3 -2.5 kb 0 2.5 kb




"Enhanceropathies”

Kabuki syndrome Preaxial Polydactyly Type Il diabetes

Karnuta and Scacheri, HMG 2018
Scacheri and Scacheri, Curr Opin Pediatr 2015
Corradin and Scacheri, Genome Med 2014



Studying the epigenome can provide insights
iInto various aspects of cancer

* Tumorigenesis

* Clinical subtyping

* Metastasis

* Drug resistance

* |dentification of non-coding driver mutations
* GWAS

* Biomarkers



Enhancers alterations in cancer
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Expansion of enhancer profiling studies

H3K27ac ChlIP-seq

H3K27ac gained VELs H3K27ac lost VELs
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Recurrent enhancer alterations in CRC

~ 100 loci
across the CRC
epigenome
look like this.




Studying the epigenome can provide insights
iInto various aspects of cancer

* Tumorigenesis

* Clinical subtyping

* Metastasis

* Drug resistance

* |dentification of non-coding driver mutations
* GWAS

* Biomarkers



Recurrent enhancer alterations in CRC

CRC Subtypes




Nature 2018

(WEE1 inhibitor)

(FGFR1 inhibitor)




/" Enhancer changes mediating acquisition of traits

~

Subtypes Metastasis Drug resistance Predisposition
e Drug sensitive Druglr_ant
B ’///;l/f »
Cell 2017

Nature Medicine 2018



Metastatic tumors show extensive enhancer alterations
(Met-VELSs)

Patient Tumors
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Enhancer alterations (Met-VELs) in metastatic osteosarcoma
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Met-VEL genes switch on/off in the lung microenvironment
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Model of enhancer function in metastasis

Enhancer
Reprogramming

Gain of enhancer activity

Morrow et al, Nature Med 2018



Metastasis is dependent on the F3 enhancer

H3K27ac ChlP-seq
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Morrow et al, Nature Med 2018



fEnhancer changes mediating acquisition of traits
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Studying the epigenome can provide insights
iInto various aspects of cancer

* Tumorigenesis

* Clinical subtyping

* Metastasis

* Drug resistance

* Identification of non-coding driver mutations
* GWAS

* Biomarkers




Search for cancer driver mutations in the human genome
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2% genes




Challenges with finding mutations in non-coding
regions

* Mutation rates vary between cancers

 Mutation rates are influenced by chromatin states
* Active chromatin — low mutation rate
* |nactive chromatin — high mutation rate

* Epigenome varies between tumors

* Cell type of origin is unknown or unavailable



Cancer driver mutations in noncoding regions

Structural Rearrangements Copy Number Alterations
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Common workflow for detecting candidate drivers
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Adapted from Khurana et al, Science (2013)



Recurrent driver mutations in noncoding regions are rare

”"Perhaps the most striking finding is the relative paucity of point
mutations driving cancer in non-coding genes and regulatory
elements.”







eLife 2019
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Studying the epigenome can provide insights
iInto various aspects of cancer

* Tumorigenesis

* Clinical subtyping

* Metastasis

* Drug resistance

* |dentification of non-coding driver mutations
* GWAS

* Biomarkers



GWAS: Genome Wide Association Studies

Cases . _ _
Variants associated with
> increased risk for

disease

Controls



GWAS: Genome Wide Association Studies

 Thousands of
associations

* Most SNPs lie in
non-coding
regions



Transcriptional enhancer elements are hotspots for SNPs that
predispose to disease

A. Distribution of GWAS Variants

Enhancer

Promoter Exon

Prostate Cancer:

LnCaP

# Asso

Enhancer Promoter Coding Exon

7501 Breast Cancer:
5 500 HMEC
250+
B Coding o I ——

# Associated SNPs

Enhancer Promoter Coding Exon

B Promoter

Systemic Lupus:
B Non-coding: Intragenic

GM12878

# Associated SNPs
=
<

[ Non-coding: Intergenic

Corradin and Scacheri
Genome Medicine 2014
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Of the known heritability estimates from GWAS, variants in

regulatory elements are estimated to account for 79%.

Gusev et al. AJHG 2014
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GWAS risk SNPs often lie in enhancer clusters
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Constituents of enhancer clusters collude to regulate genes
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Regulatory circuitry at GWAS loci extends beyond LD blocks
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“Outside variants” — SNPs inherited independentl
regulatory circuit of the same gene target



The Regulatory Circuitry of Gene Expression

<
Enhancer

SNPs that lie outside the GWAS-associated region, but are part of
the same regulatory circuit can influence disease risk



Studying the epigenome can provide insights
iInto various aspects of cancer

* Tumorigenesis

* Clinical subtyping

* Metastasis

* Drug resistance

* |dentification of non-coding driver mutations
* GWAS

* Biomarkers






Studying the epigenome can provide insights
iInto various aspects of cancer

* Tumorigenesis

* Clinical subtyping

* Metastasis

* Drug resistance

* |dentification of non-coding driver mutations
* GWAS

* Biomarkers

* One final story



Functional enhancers on circular
extrachromosomal DNA (ecDNA)




DNA FISH Electron Micrograph

GBM3565

Morton et al, Cell 2019 Wu et al, Nature 2019



Extrachromosomal DNA (ecDNA)
AKA: “double minutes”

DNA FISH

Found in many forms of cancer.
e Particularly prevalent in aggressive cancers notoriously difficult to treat
Massive focal DNA amplifications
e 10-100s of copies per cell
 0.5-2.5 Million base pairs in size
Complex structures = can incorporate multiple oncogenes from different
chromosomes
* Extensive sub-clonality
Can hop back into the genome and remodel it
Provides a means for rapid tumor evolution and emergence of drug
resistance phenotypes



Selection of enhancers on ecDNA
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The “Onco-locus”

Oncogene + enhancers +
other selected elements contributing to fithess



Precision cancer medicine — A vision for an epigenomics based approach

* Leverage knowledge about the genetic makeup of cancer for precisely
targeted therapy.

* Some success
 Most patients don’t meet
the clinical criteria

Mutations
in Genes

The Tumor Epigenome



Precision cancer medicine — An epigenomics based approach

Regulatory Differences

Consented Tumor Epigenomic Clinical Integration
Patients Collection Profiling

Deliverables

|dentification of markers for prognosis, tumor behavior, and treatment response



