

Comprehensive Analysis of Single Cell Epigenomic Data

Yang (Eric) Li

CSHL Sequencing Technologies and Bioinformatics Analysis

Nov 19, 2021

Bing Ren Lab Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine CMM-East 2071, San Diego, CA

Light is "regulated" by switches.

ATAC-seq identifies accessible DNA regions by probing open chromatin with hyperactive mutant Tn5 Transposase that inserts sequencing adapters into open regions of the genome.

Buenrostro, et al. Nature Methods, 2013

Droplet-based (e.g. 10x Genomics)

ATAC-seq identifies accessible DNA regions by probing open chromatin with hyperactive mutant Tn5 Transposase that inserts sequencing adapters into open regions of the genome.

Buenrostro, et al. Nature Methods, 2013

Droplet-based (e.g. 10x Genomics)

Barcoded beads

□ Split-pool-barcoding/single cell combinatorial indexing (sci-)

ATAC-seq identifies accessible DNA regions by probing open chromatin with hyperactive mutant Tn5 Transposase that inserts sequencing adapters into open regions of the genome.

Buenrostro, et al. Nature Methods, 2013

Dr. Sebastian Preissl Associate Director Single-cell Genomics

Xiaomeng Hou Research Associate

OLF: Olfactory bulb; HIP: Hippocampus; CNU: Cerebral nuclei (striatum, pallidum) 7

Overview of data analysis

Data Processing and Clustering

Cluster annotation based on marker

er annotation d on marker

Batch correction

or integration

(optional)

after

before

Created by Sebastian Preissl

Quality control at bulk level

Pairwise Spearman Correlation Coefficients between biological replicates

- □ A large proportion of reads with less than 100 bp, which represents the nucleosome-free region.
- The fragment size distribution should have a clear periodicity

Quality control at single-cell/nucleus level

Keep single cell/nucleus has:more sequenced fragments, as well ashigh signal-to-noise ratio.

Potential doublets should be identified and further removed.

Cell clustering pipeline

Cell clustering pipeline

Single cell analysis of chromatin accessibility in the mouse cerebrum reveals 160 sub-types

Single cell analysis of chromatin accessibility in the mouse cerebrum reveals 160 sub-types

Single cell analysis of chromatin accessibility in the mouse cerebrum reveals 160 sub-types

Regional Specificity of different brain cell types

Overview of downstream analysis

Downstream characterization

Identification of candidate cis-regulatory elements (cCREs)

For single-cell dataset, we need to account for different sequencing depth and/or the number of nuclei in individual clusters

"score per million (SPM)": corrected MACS2 peak scores (-log10(*q*-value)) First introduced in the analysis of bulk ATAC-seq from tumor samples (Corces, M. R. et al. Science, 2018)

A catalogue of 491,818 cCREs in the mouse cerebrum with cell-type specific accessibility

491,818 cCREs

Differential analysis in single cell level

Identify differential peaks

Full model:
$$logit(P_{ij}) = a_j + m_j + r_j + \varepsilon_j$$

Reduced model: $logit(P_{ij}) = a_j + r_j + \varepsilon_j$

P: the probability that the ith site is accessible in the jth cell *a*: log10(total number of sites observed as accessible for the jth cell) *m*: membership of the jth cell in the cluster/region being tested *r*: replicate label for jth cell

Then, a likelihood ratio test is used to determine if the full model (including cell cluster membership) provided a significantly better fit of the data than reduced model

Open chromatin regions characterize distinct types of neuronal cells

Open chromatin regions characterize regional difference in cell types

Identification of putative enhancers and their target genes

491,818 candidate *cis* regulatory elements (cCRE)

cCRE: candidate cis regulatory element PCC: Pearson correlation coefficient Co-accessible cCREs: identified by using Cicero (Trapnell lab).

Identification of putative enhancers and their target genes

491,818 candidate cis regulatory elements (cCRE)

cCRE: candidate cis regulatory element PCC: Pearson correlation coefficient Co-accessible cCREs: identified by using Cicero (Trapnell lab).

- □ 86,850 putative enhancers linked to 10,604 genes
- □ 7 enhancers per gene (average)
- □ 1-2 genes per enhancer
- □ Gene-enhancer distance: ~179 kbp (median)

Putative enhancers reflect cell-type-specific gene expression patterns

Candidate TFs involved in adult neurogenesis in mouse brain

Candidate TFs involved in adult neurogenesis in mouse brain

Non-coding variants linked to Neurological Traits/Disorders are enriched in cCREs in distinct cerebral cell types

Fraction of mouse cCREs mapped to the human genome with high similarity >50%

Explore datasets using the CATIas web portal

Mouse Brain

Sample: 45 brain sub-regions Method: snATAC-seq Nuclei count: > 800,000

All nuclei	
43 major clusters	WGL
160 clusters	
n = 813,799	VPIA VLMC
OGC	PER
IOL	VEC
	OPC
MXD	ASC
D2MSX STRGA	ASC
CNUGA	RGL
D1MSX M	SGA CRC DGNBL
	OBNBL OBGA1/2
CTGL LSXGA	OBDOP
CLAGL	PVGA GRC
L6bGL	LAMGA
	PIRGL
ITL6GL	
IT FOL	CA3GL
N IT 2201	OBGL CAIGL
G A IIL23GL	
1 <u>4</u>	
umap 1	UT OL COL

Explore cell clusters in different datasets

Last updated May,2020

Explore

	Class	L3	Description
		Cluster	
0	GABAergic	PVGA1	MGE-derived neurogliaform cells, Pvalb
Average TSSE:		20.89	
Average LogUMI:		3.63	
Moi	re Info		
0	GABAergic	SSTGA5	MGE-derived neurogliaform cells, Sst
0	GABAergic	LAMGA2	CGE-derived neurogliaform cells, Lamp5
0	GABAergic	PVGA6	MGE-derived neurogliaform cells, Pvalb
0	GABAergic	VIPGA3	CGE-derived neurogliaform cells, Vip
0	GABAergic	LAMGA4	CGE-derived neurogliaform cells, Lamp5
0	GABAergic	SSTGA1	MGE-derived neurogliaform cells, Sst
0	GABAergic	VIPGA1	Cholinergic neurons, Cortex
0	GABAergic	SSTGA4	MGE-derived neurogliaform cells, Sst
0	GABAergic	SSTGA3	MGE-derived neurogliaform cells, Sst

Cell Types

Explore detailed information for every cell type

Explore

V mm10	any s	097718,810,114-19,731,834	Quarter	CONTRACT CONTRACTOR		٩,
_						
	18,825.68	12,890 80	18,675.60	18,700.00	18,728.48	
30 Mad1					1	k
e		:	1.		-	Į.,
	:		÷ •		·	Ľ
13 Satt					1	k
	- · · •		· .		-	Į.,
	: :		÷ •			Ľ
15 DG					1	i×
•			1.			l.
					•	Ľ
7.1 L23c1					1	i٢
_			ala a		-	
					·	Ľ
AscNt				1.1	1	i٢
_			· • •	م بالبينات .		
						Ľ
8 Mgc1	1				1	í٢
_	- +		<u>ku</u> .		· •	
					·	Ľ
(Relseq (Jenes					í٢
-### <u>@</u>	HH4	Carlin	H-B B			Ł

Explore Tracks

Load signal tracks and compare between cell types/regions

Explore

Article Open Access Published: 06 October 2021

An atlas of gene regulatory elements in adult mouse cerebrum

Yang Eric Li, Sebastian Preissl, Xiaomeng Hou, Ziyang Zhang, Kai Zhang, Yunjiang Qiu, Olivier B. Poirion, Bin Li, Joshua Chiou, Hanqing Liu, Antonio Pinto-Duarte, Naoki Kubo, Xiaoyu Yang, Rongxin Fang, Xinxin Wang, Jee Yun Han, Jacinta Lucero, Yiming Yan, Michael Miller, Samantha Kuan, David Gorkin, Kyle J. Gaulton, Yin Shen, Michael Nunn, Eran A. Mukamel, M. Margarita Behrens, Joseph R. Ecker & Bing Ren \supseteq -Show fewer authors

Nature 598, 129–136 (2021) | Cite this article

□ Explore cell cluster

- □ Cell type annotations
- □ Compare signal tracks

Data now available via our portal: http://catlas.org/mousebrain

Article | Open Access | Published: 06 October 2021

A multimodal cell census and atlas of the mammalian primary motor cortex

BRAIN Initiative Cell Census Network (BICCN)
Article | Open Access | Published: 06 October 2021

A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex

Zizhen Yao, Hanqing Liu, [...] Eran A. Mukamel ⊠ Article | Open Access | Published: 06 October 2021

Comparative cellular analysis of motor cortex in human, marmoset and mouse

Trygve E. Bakken ⊠, Nikolas L. Jorstad, [...] Ed S. Lein ⊠ Article | Open Access | Published: 06 October 2021

DNA methylation atlas of the mouse brain at singlecell resolution

Hanqing Liu, Jingtian Zhou, [...] Joseph R. Ecker ⊡ Article | Open Access | Published: 06 October 2021

Epigenomic diversity of cortical projection neurons in the mouse brain

Zhuzhu Zhang, Jingtian Zhou, [...] Edward M. Callaway

<u>Nature</u> 598, 167–173 (2021) | <u>Cite this article</u>

Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH

Meng Zhang, Stephen W. Eichhorn, Brian Zingg, Zizhen Yao, Kaelan Cotter, Hongkui Zeng, Hongwei Dong & Xiaowei Zhuang 🖂

Integrative analysis of single-cell multi-ome datasets

Integrative analysis of single-cell multi-ome datasets

Sst

Acknowledgment

Bing Ren Lab

Dr. Bing Ren Ziyang Zhang Bin Li Kai Zhang Yunjiang Qiu Naoki Kubo Rongxin Fang James Hocker Ramya Raviram Yanxiao Zhang Guoqiang Li

Other members

Center for epigenomics

Dr. Bing Ren Dr. Sebastian Preissl Dr. David Gorkin Dr. Olivier Poirion Xiaomeng Hou Jee Yun Han Xinxin Wang

Yin Shen lab

Xiaoyu Yang

Kyle Gaulton lab

Joshua Chiou

Margarita Behrens lab

Dr. Margarita Behrens Jacinta Lucero Antonio Pinto-Duarte

Joseph Ecker lab

Dr. Joe Ecker Dr. Chongyuan Luo Hanqing Liu Jingtian Zhou

Eran Mukamel lab

Dr. Eran Mukamel

