Long Read Sequencing

Dick McCombie Davis Family Professor of Human Genetics Cold Spring Harbor Laboratory

Advanced Sequencing Technologies and Applications course Cold Spring Harbor Laboratory 2021

Significant advances in genome sequencing over last 16 years

Evolution of genome assemblies

- Initial references very high quality extremely expensive
- Period of lower quality Sanger assemblies (~2001-2007)
- Next gen assemblies (short read) 2007- now
- Third generation long read assemblies
 -2013/2014 now what can we do currently?
- T2T extremely complete genomes

Goodwin, McPherson and McCombie. Nat. Rev. Genetics. 2016

Short vs long reads

- Short read NGS has
 revolutionized resequencing
- *De novo* assembly is possible but not optimal with short reads
- Long reads improve the ability do *de novo* assembly dramatically
- Even in organisms with a good reference, such as humans, resequencing misses many structural differences relative to the reference

- Plant genomes are very large in general
- There are significant structural differences between different strains of the same plant such as rice
- These structural differences contribute to salient biological differences

Advantages of Long Read length

Full scale of genetic variation Repetitive regions Structural variants Enables higher quality alignments and assembly Less fold coverage required? Finished genomes - T2T

Limitations of long reads

- Cost
- Throughput
- Accuracy
- DNA amount required
- DNA quality required

Two "flavors" of long read sequencing

Significant advances in long read sequencing over last 6 years

PacBio

RSII

- ~85% single pass accuracy
- "short read" CCS accuracy >99.999%
- Up to 2Gb per SMRTcell
- Read lengths up to 60kb

Pacific Biosciences Sequel II

Released in 2018

Smaller, lower cost instrument

8 Million ZMW (155k RSII, 1M Sequel I)

Early runs were rocky

Substantial recent improvement in performance up to 200Gb of CLR data or 30Gb of HiFi data Upto 800Gb CLR or 120Gb HiFi in one week

Zero-Mode Waveguides Are the Observation Windows

DNA sequencing is performed on SMRT[™] Cells, each containing tens of thousands of zero-mode waveguides (ZMWs)

A ZMW is a cylindrical hole, hundreds of nanometers in diameter, perforating a thin metal film supported by a transparent substrate

The ZMW provides a window for observing DNA polymerase as it performs sequencing by synthesis

DNA Polymerase as a Sequencing Engine

A single DNA polymerase molecule is attached to the bottom of the ZMW

A single incorporation event can be identified against the background of fluorescently labeled nucleotides

ZMW with DNA polymerase

ZMW with DNA polymerase and phospholinked nucleotides

Processive Synthesis with Phospholinked Nucleotides

Enzymatic incorporation of the labeled nucleotide creates a flash of light, which is captured by the optics system and converted into a base call with associated quality metrics using optimized algorithms To generate consensus sequence from the data, an assembly process aligns the different fragments based on common sequences

LIGHTS ALL ASKEW IN THE HEAVENS; Men of Science More or Less Agog Over Results of Eclipse Observations. EINSTEIN THEORY **TRIUMPHS Stars Not Where They Seemed or** Were Calculated to be, but Nobody Need Worry. A BOOK FOR 12 WISE MEN No More in All the World Could Comprehend It, Said Einstein When His Daring Publishers Accepted It.

New York Times Nov. 9, 1919.

Yeast: S. cerevisiae W303

reads

PacBio RS II sequencing at CSHL Size selection using an 7 Kb elution window on a BluePippin™ device from Sage Science

S. cerevisiae W303

S288C Reference sequence

•12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

PacBio assembly using HGAP + Celera Assembler •12.4Mbp; 21 non-redundant contigs; N50: 811kbp; >99.8% id

S. pombe dg21

ASM294 Reference sequence

•12.6Mbp; 3 chromo + mitochondria; N50: 4.53Mbp

PacBio assembly using HGAP + Celera Assembler •12.7Mbp; 13 non-redundant contigs; N50: 3.83Mbp; >99.98% id

O. sativa pv Indica (IR64)

Genome size: ~370 Mb Chromosome N50: ~29.7 Mbp

Assembly	Contia NG50	
		HGAP Read Lengths
MiSeq Fragments 25x 456bp (3 runs 2x300 @ 450 FLASH)	19 kbp	Max: 53,652bp 22.7x over 10kbp (discarded reads below 8500bp)
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18 kbp	
HGAP + CA 22.7x @ 10kbp	4.0 Mbp	
Nipponbare BAC-by-BAC Assembly	5.1 Mbp	10000 20000 30000 40000 50000

Structural Variations in SKBR3

SKRB3 cell line was derived by G. Trempe and L. J. Old in 1970 from pleural effusion cells of a patient, a white, Caucasian female

Most commonly used Her2-amplified breast cancer cell line

Often used for pre-clinical research on Her2-targeting therapeutics such as Herceptin (Trastuzumab) and resistance to these therapies.

Nattestad, et al, Gen. Res. 2018

(Davidson et al, 2000)

Assembly using PacBio yields far better contiguity

Number of sequences: 10,304 Total sequence length: 2.75 Gb Mean: 266 kb Max: 15 Mb N50: 2.17 Mb

NG50: 1.86 Mb

Number of sequences: 748,955 Total sequence length: 2.07 Gb Mean: 2.8 kb Max: 61 kb N50: 3.3 kb NG50: 1.9 kb

illumina®

Cancer lesion reconstruction from genomic threads

By comparing the proportion of reads that are spanning or split at breakpoints we can begin to infer the history of the genetic lesions. 1. Healthy diploid genome

- 2. Original translocation into chromosome 8
- 3. Duplication, inversion, and inverted duplication within chromosome 8
- 4. Final duplication from within chromosome 8

PacBio errors are randomly distributed

Enough coverage makes error drop out

From Wenger et al (2019) Nature Biotechnology

PromethION

24 independent flowcells

500bp/s sequencing speed

3000 pores per flowcells = 144,000 pores (fully loaded) (MinION cells 512 pores)

On site 1D basecalling

>140Gb in CSHL hands

>100M cDNA reads

Up to ~5 Tb fully loaded in one week

Oxford Nanopore relies on CsgG and a nondestructive motor protein

Cis side voltage drives DNA through pore

Motor protein mediates DNA unwinding and translocation speed

Ions flow through the pore to change membrane potential

Small changes in measured voltage are translated into k-mers

Nanopore Sensing Summary

Nanopore = 'very small hole'

Ionic current flows through the pore Introduce analyte of interest into the pore

Identify target analyte by the characteristic disruption or block to the electrical current Block or 'State', Dwell, Noise

Raw Data and Data Reduction

Nanopore errors are (mostly) randomly distributed

ATGCTGTTCGATCGATGCTGCTAGCTAGCTAGCTTTTTT CCGATCCTACTGACTTACTATGCT

ATGCTCTTCGATCGATGCTGCTAGCTAGCTAGCTTTTTTT CGGATCCTACTGACTTACTATGCT

ATGCTCTTCGATCGATGCTGCTAGCTAGCTAGCTTTTTTT CCGATCCTACTGACTTACTATGCT

Enough coverage makes error (mostly) drop out

Structural Variant Comparison of SKBR3

Structural Variant Comparison of SKBR3

Multi-omics Long Read Analysis of Cancer

	Normal Breast Tissue	Normal Breast Organoid	Tumor Breast Organoid	SK-BR-3 Breast Cancer Cell Line
Oxford Nanopore WGS	Y	Ν	Y	Y
PacBio WGS	Ν	Ν	Ν	Y
ONT Methylation	Y	Ν	Y	Y
Illumina Methylation	Y	Ν	Y	Y
Illumina RNA-seq	Ν	Y	Y	Y
PacBio RNA-seq	Ν	Ν	Ν	Y
Pathology	NA	NA	ER+, PR+, Her2-	ER-, PR-, Her2+
Histology	Digital Atlas of Breast Pathology	David Spector, CSHL	David Spector, CSHL	ATCC
Image Source				

Preliminary Structural Variations Analysis

			Duplication			Translocatio
	Total	Deletions	s	Insertions	Inversions	ns
All SVs in normal	9816	5225	578	3727	130	156
All SVs in tumor	13737	7020	988	5292	202	235
SVs only in tumor (Also exclude NA12878)	3662	1805	420	1250	98	89

SVs in sample 51 not detected by short reads. Insertions found in BRCA1 and CHEK2. Insertions and duplications found in NOTCH1.

ONT long read sequencing of neo-tropical bats

We have sequenced the genomes of 2 bat species (Artibeus jamaicensis and Pteronotus mesoamericanus) using Oxford Nanopore PromethION long reads (with Illumina short reads for error correction) to fully assess the spectrum of genomic variations which may contribute to longevity and cancer suppression.

*Collaboration with Bat1K and AMNH (Nancy Simmons and Sara Oppenheim)

Highly contiguous assemblies with contig N50 of 28-29Mb and consensus quality of >99.99%

Bat-specific deletion in TP53

Living Fossils Oxford Nanopore Sequencing

Node	Gymnosperm species	1C (pg)	1C (Gbp)	Sequencing strategy * = this project
1	Ginkgo biloba ("living fossil")	11.75	11.5	NGS [1]
1	Cycas revoluta	13.70	13.4	NGS [2]
2	Pinus taeda	22.10	21.6	NGS [3]
2	Picea abies ("living fossil")	20.01	19.6	NGS [4]
3	Juniperus communis	9.84	9.6	Oxford Nanopore*
3	Thuja plicata	12.84	12.6	NGS [2]
3	Metasequoia glyptostroboides ("living fossil")	11.04	10.8	Oxford Nanopore*
4	Wollemia nobilis ("living fossil")	11.04	10.8	Oxford Nanopore*
4	Agathis vitiensis	15.80	15.5	Oxford Nanopore*
5	Welwitschia mirabilis	7.20	7.0	NGS [2]
5	Gnetum ula	2.25	2.2	Oxford Nanopore*

Wollemia nobilis Genome Assembly

Previous Assembly with GuppyV3 and wtbg2 assembler

Genome size	15.6 Gbp
No of Contigs	223,812
N50 Contig-size	312 Kbp
Max Contig-size	7 Mbp
Assembly Quality	Q20 (99%

Current Assembly with GuppyV4 and Flye assembler

Genome size	11.56 Gbp
No of Contigs	17,294
N50 Contig-size	9.21 Mbp
Max Contig-size	54.83 Mbp
Assembly Quality	Q31 (99.9%)

Long Read Sequencing of Early Onset Cancer Pedigrees

- No family history of cancer
- Standard IMPACT panel did not detect drivers

Collaboration with Zsofia Stadler MSKCC

Long Read Sequencing of Early Onset Cancer Pedigrees

ONT signal data allows for direct detection of methylation state

Hypermethylation of promoter region of tumor suppressor in proband comapred to healthy parents

Collaboration with Zsofia Stadler MSKCC

ONT software improvements are increasing base quality

NewRun

OldRun

"Guppy V5" sup accuracy model

"Guppy V4" high accuracy model

Optimization of long read sequencing on the PromethION

500000

400000

300000

ž 200000

100000

400000

300000

200000

100000

0

1

77

Femto Pulse Fragment Size Estimations before and after protocol adjustments for shearing and application of SRE

Read Length Distributions before and after protocol adjustments for shearing and application of SRE

Read Length N50

11373 bp

Read Length N50

35142 bp

100

1000

Read length

10.07 Read length

10

Final ONT read length distribution

Long Read Sequence Capture - Shruti Iyer

- Original sequence capture with Illumina used hybridization methods to target exomes or other regions of the genome for Illumina sequencing with very short reads (Hodges et al, Nat Gen. 2007)
- Cancer cells within same sample can be heterogenous
- Malignant cells can be as low as 10%
 - Subpopulations exhibit different alleles / genomic features
- Detecting subpopulations difficult with 30x WGS
 - Targeted sequencing, exome capture -200 to 500 fold coverage is possible with Illumina sequencing
 - Relative coverage for same cost is higher

Cas9-mediated PCR-free enrichment (nCATS)

Targeted long reads

- Cover entire target region with a single read
- Reads covering entire target regions minimize mapping errors due to SVs

MCF 10A & SK-BR-3

• Amplific**atigenefpae**el- can get methylation calls

Genes targeted and coverage obtained from nCATS runs

		MCF10A
Cana	Target	Coverage
Gene	size (bp)	nCATS
MYC	12565	141
HOXA9	18506	40
FGFR4	19916	69
STK11	30286	36
CDKN2A	30774	NA
TERT	44787	13
KRAS	50955	23
BRCA2	91218	3
PAX7	120934	5
APC	144265	4
Total	564206	15
target		

MCF10A nCATS

Number of reads covering X% of								
	gene							
Gene	100 %	80%	60%	40%				
MYC	151	165	178	185				
FGFR4	79	82	86	99				
HOXA9	42	44	46	49				
STK11	32	35	42	52				
TERT	5	8	8	15				
KRAS	11	18	28	39				
BRCA2	1	1	2	3				
PAX7	1	1	1	4				
APC	0	0	0	2				

Affinity-based Cas9-Mediated Enrichment (ACME)

Coverage of genes targeted using nCATS vs ACME

		Coverage			
Gene	Target size (bp)	MCF10A nCATS	MCF 10A ACME	SK-BR-3 ACME	
MYC	12565	141	1025	2274	
HOXA9	18506	40	246	223	
FGFR4	19916	69	467	124	
STK11	30286	36	175	93	
CDKN2A	30774	NA	NA	55	
TERT	44787	13	105	90	
KRAS	50955	23	158	57	
BRCA2	91218	3	55	35	
PAX7	120934	5	31	25	
APC	144265	4	22	13	
Total target	564206	15	101	97	

51

BRCA2 (~90 kb target size)

Spanning read counts from nCATS and ACME runs

MCF10A nCATS

Number of reads covering				
	X%	of ger	ne	
Gene	100 %	80%	60%	40%
MYC	151	165	178	185
FGFR4	79	82	86	99
HOXA9	42	44	46	49
STK11	32	35	42	52
CDKN2 A	NA	NA	NA	NA
TERT	5	8	8	15
KRAS	11	18	28	39
BRCA2	1	1	2	3
PAX7	1	1	1	4
APC	0	0	0	2

MCF10A ACME				
Numbe	er of re	ads co	overin	g X%
	of	gene		
Gene	100%	80%	60%	40%
MYC	993	103 6	1055	1075
FGFR4	425	444	471	489
HOXA9	233	242	253	263
STK11	152	161	168	183
CDKN2 A	NA	NA	NA	NA
TERT	61	74	87	119
KRAS	111	123	142	168
BRCA2	20	26	36	54
PAX7	2	4	7	26
APC	0	1	2	16

SKBR3 ACME

Number of reads covering X%				
	of	gene		
Gene	100%	80%	60%	40%
NAVC	2057	2210	230	2424
IVITC	2037	2210	0	2424
FGFR4	47	106	118	133
HOXA9	186	206	227	239
STK11	64	79	89	102
CDKN2	25	11	51	60
А	55	41	54	00
TERT	0	6	7	106
KRAS	27	37	43	60
BRCA2	3	10	21	34
PAX7	1	3	7	18
APC	0	1	1	7

Summary

Long read platforms have matured significantly in the last few years PacBio and Oxford Nanopore producing similar length distributions Overcome high error sequencing with improved informatics Oxford Nanopore exciting for methylation & direct RNA capabilities

Long reads are crucial for accurate SV calling Finding thousands to tens of thousands of additional SVs over short reads Resolves the false positives observed with short reads Detecting potential cancer risk factors that would otherwise go unnoticed

Sample & DNA requirements one of the largest barriers for clinical application Continue to advance protocols for extracting, preparing samples Organoids (as opposed to primary tumors) enable large DNA amounts for long read sequencing, though it remains much more difficult then cell culture Organoids also enable application and profiling of other molecular and pharmaceutical assays

Future goals

Reduce sample DNA input - tumors, single cell, targeting - Shruti Iyer Analyse data from projects for relevant genome properties Improve long read sequencing efficiency - read length, yield, combination of input data types Optimum cost benefit analyses of different long read approaches and coverage

Acknowledgements

<u>McCombie Lab</u>

Sara Goodwin Melissa Kramer Olivia Mendivil Ramos Stephanie Muller Robert Wappel Elena Ghiban Senem Mavruk Shruti Iyer

Spector Lab

Gayatri Arun Sonam Bhatia

<u>Siepel Lab</u>

Armin Scheben

<u>Schatz Lab</u>

Sam Kovaka Med Michael Kirsche Rachel Sherman Katie Jenike Sergey Aganezov Srividya Ramakrishnan

<u>Timp Lab</u>

lsac Lee

MaizeCODE consortium Living Fossils consortium

AMNH Nancy Simmons Sara Oppenheim

Fritz Sedlazeck Karen Kostroff

Medhat Helmy

Baylor

College of Medicine

<u>Funding</u>

NCI NSF NHGRI Northwell Health