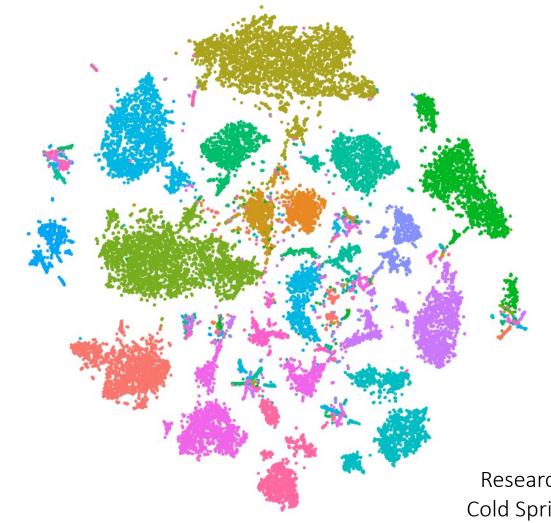
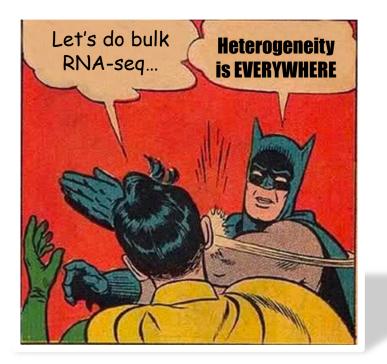
Single Cell Sequencing

CSHL Course: Advanced Sequencing Technologies & Applications

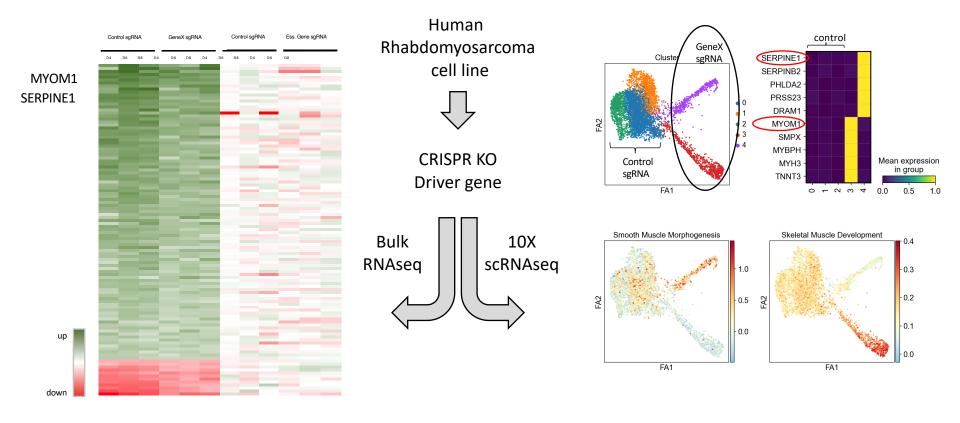


Jon Preall Research Associate Professor Cold Spring Harbor Laboratory

Why Sequence Single Cells?



The Importance of Single Cell Resolution

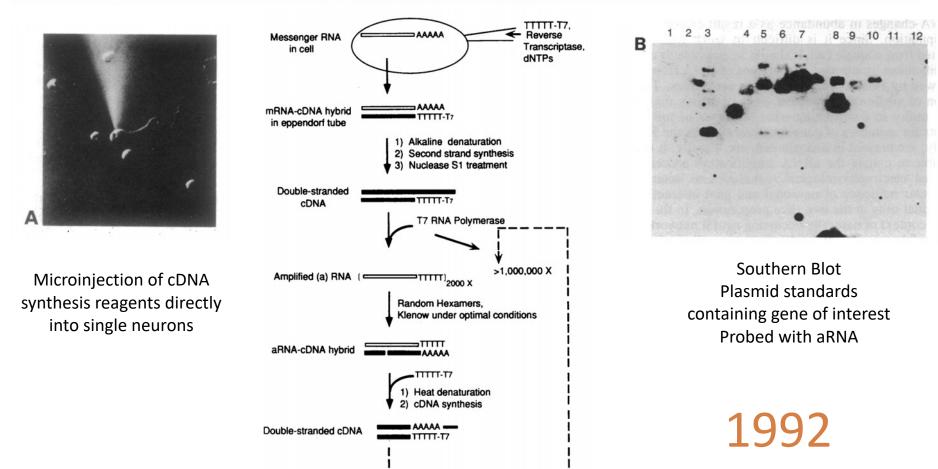


Analysis of gene expression in single live neurons

(amplified, antisense RNA/expression profile/mRNA complexity/pyramidal cell)

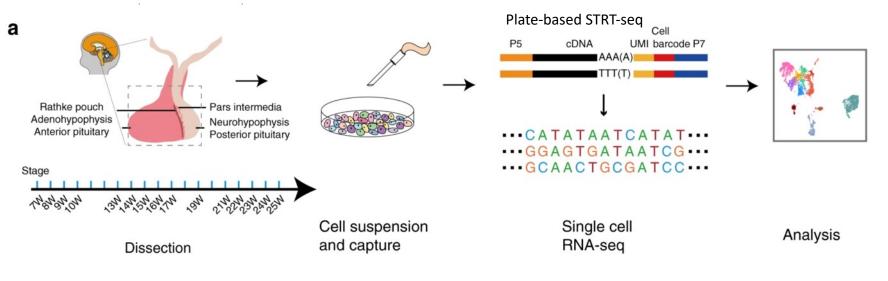
JAMES EBERWINE^{*†‡}, HERMES YEH[§], KEVIN MIYASHIRO^{*}, YANXIANG CAO^{*}, SURESH NAIR^{*}, Richard Finnell^{*¶}, Martha Zettel[§], and Paul Coleman[§]

Departments of *Pharmacology and [†]Psychiatry, University of Pennsylvania Medical School, Philadelphia, PA 19104; and Department of [§]Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, NY 14642



Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development

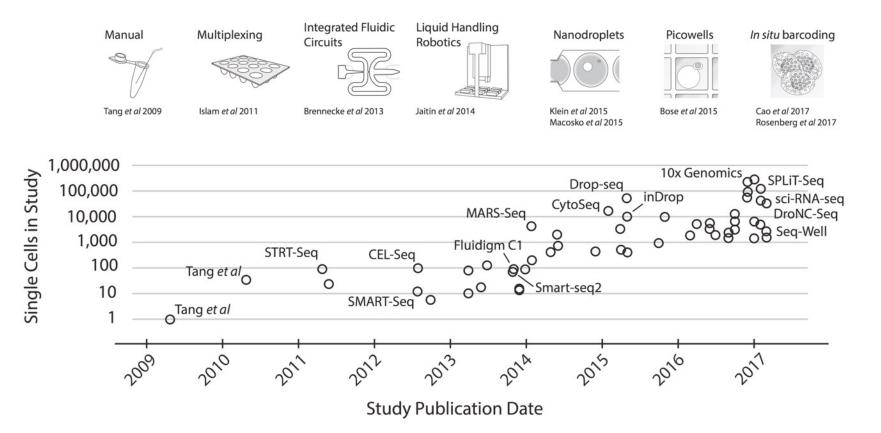
Shu Zhang, Yueli Cui, Xinyi Ma, Jun Yong, Liying Yan, Ming Yang, Jie Ren, Fuchou Tang, Lu Wen ⊠ & Jie Qiao ⊠



Nature Communications 11, Article number: 5275 (2020) Cite this article

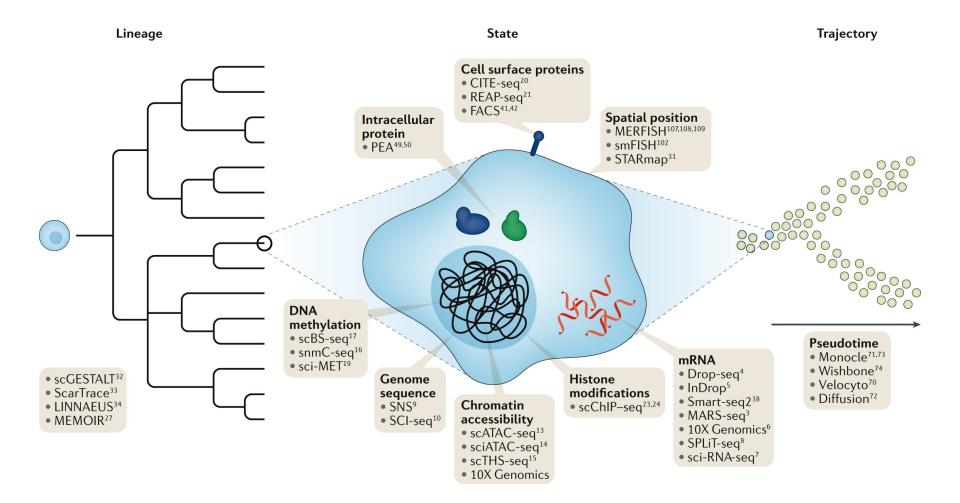
4,113 mouth-pipetted cells!

The Rapid Rise of Single Cell Biology



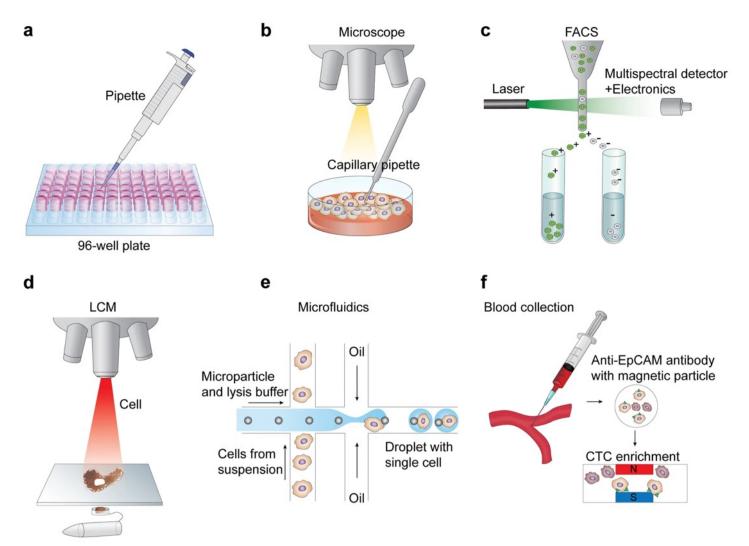
~10-fold increase in # of cells profiled every other year

Many Flavors of Single cell 'Omics

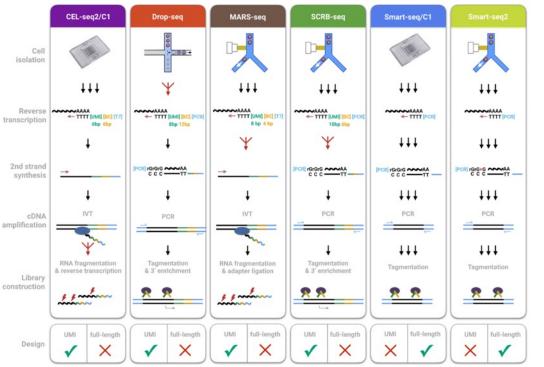


Single Cell Transcriptomics

Step 1: Partitioning Cells



Step 2: Library Preparation



What question are you asking?

Simple Gene expression?

Strand-selective?

Alternative splicing / polyA / TSS?

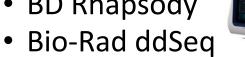
Allele-specific expression?

Genotype heterogeneity (eg. in cancer)?

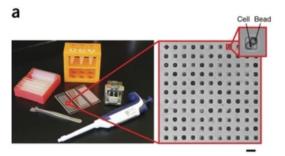
Depth vs Breadth?

Most Common Platforms

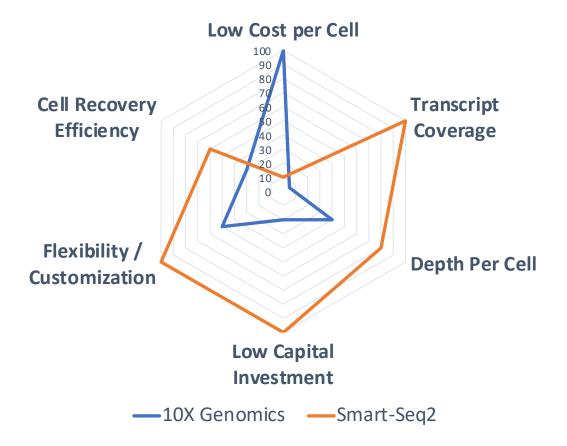
- Droplet / Bead
 - 10X Genomics Chromium
 - BD Rhapsody



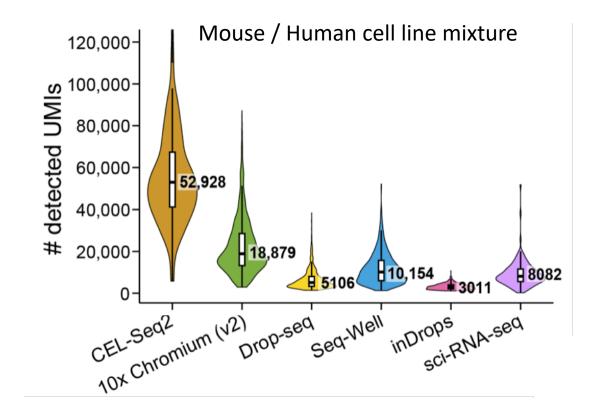
- Plate-based
 - SMART-Seq (v2, v3)
 - CEL-Seq2
- Nanowell
 - Seq-Well



Which Method Should I Use?



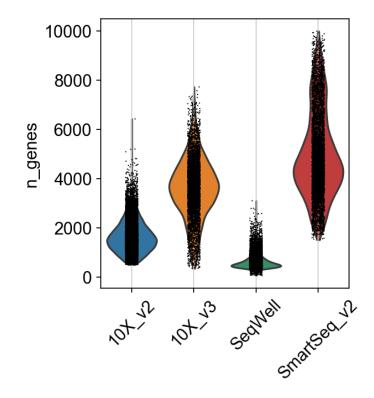
Systematic comparative analysis of single cell RNAsequencing methods



Ding et al. bioRxiv (2019) https://doi.org/10.1101/632216

Mouse Fibroblasts:

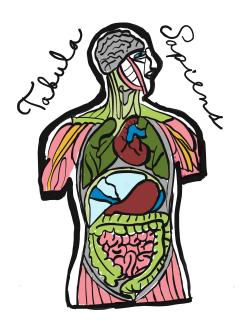
Unique Genes Detected across technologies

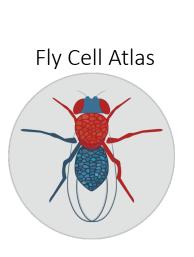


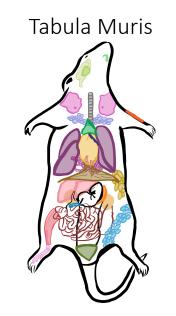
10X Genomics: the *lingua franca* of the single-cell age

- Easy
- Robust
- Expensive.

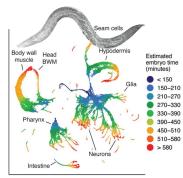
Allen Brain Map





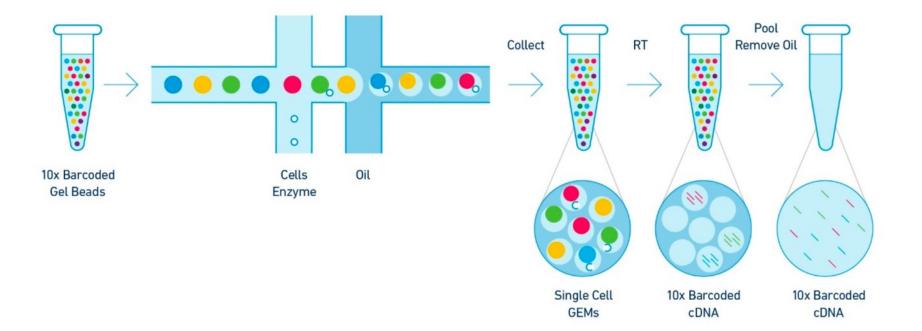


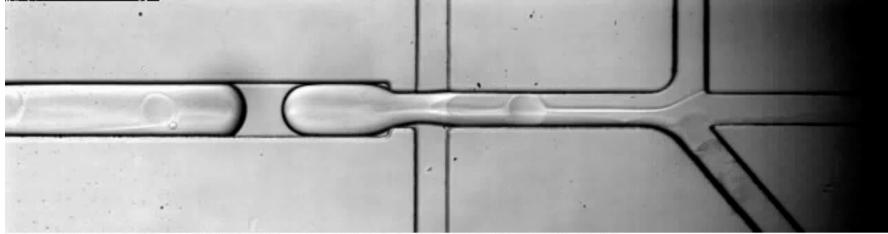
C elegans



Packer et al (2019) Science

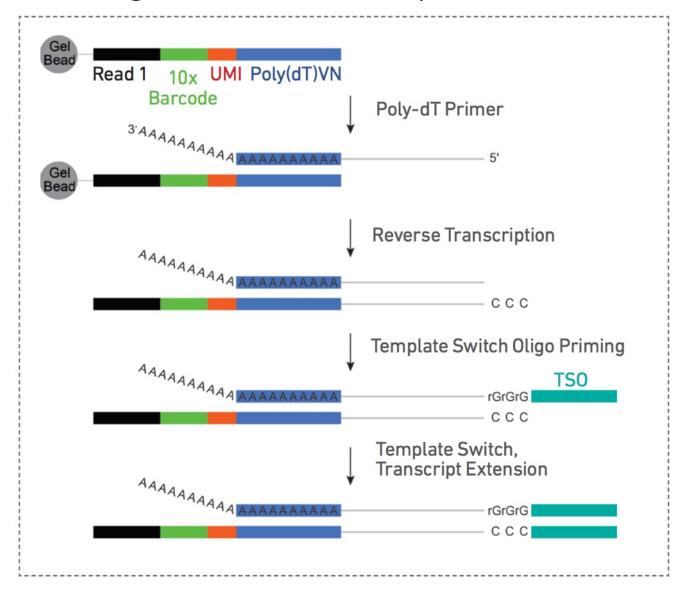
10X Genomics Workflow

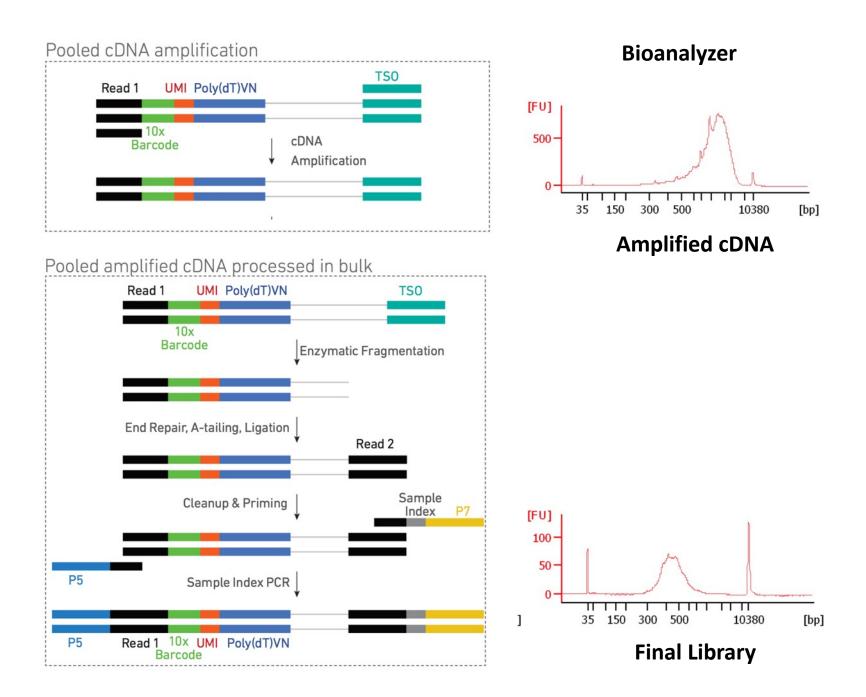




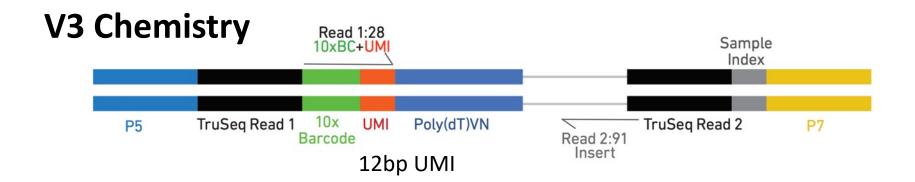
6/3/2014 9:30:12 PM -43738.7[ms] 000000523 HiSpec 1 [00-11-1c-f1-73-f3] Fastec 1280x336(Q) 400fps 100µs V1.4.3 (Build: 2419)

Single Cell 3' Chemistry Overvivew



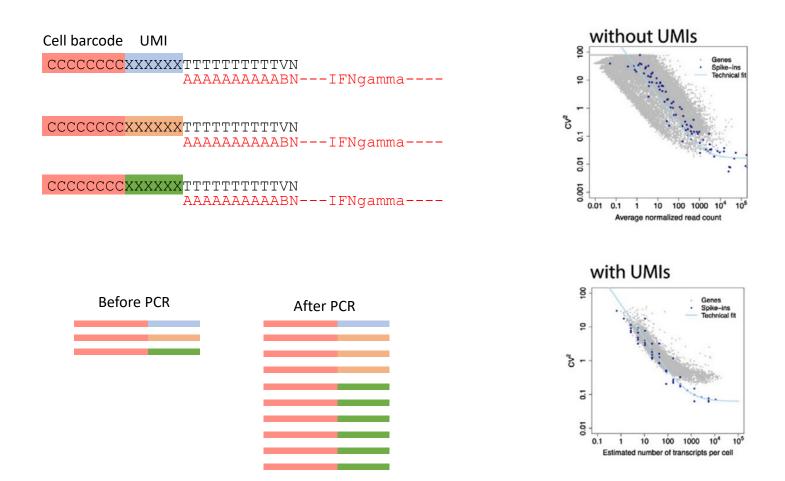


Anatomy of a 10X 3'-Single Cell Amplicon



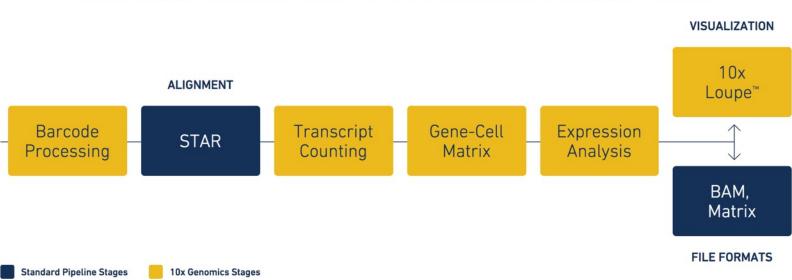
Unique Molecular Identifier (UMI)

Random ~8-10bp sequence incorporated during oligo synthesis



Mapping and Transcript Quantification

Cellranger Count pipeline: <u>10X Genomics support page</u>



SINGLE CELL RNA ANALYSIS PIPELINE FOR THE CHROMIUM SINGLE CELL 3' SOLUTION

Digital Gene Expression, Not Coverage

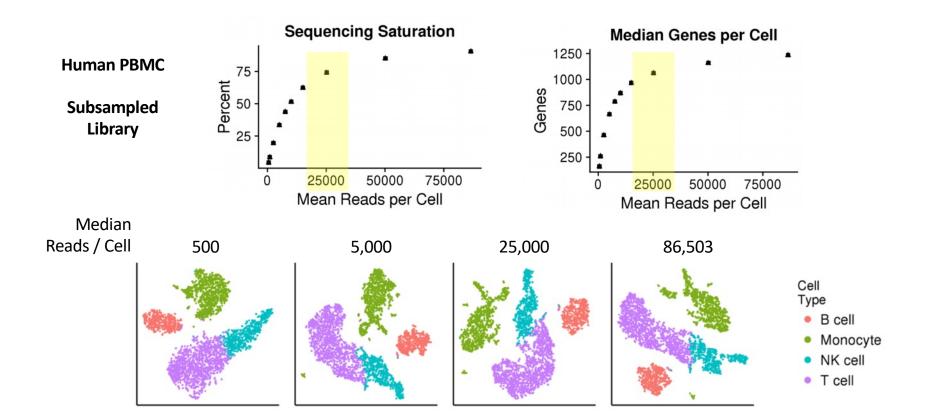
"Deep" Single Cell Libraries

Well-based, eg. SmartSeq Fluidigm C1

Droplet – Based DGE libraries

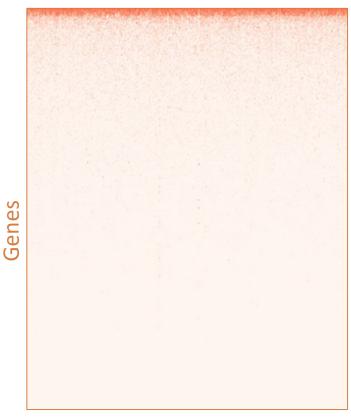
Drop-Seq 10X Genomics Seq-Well

How Deeply Should I Sequence?



Sparse sampling of gene expression

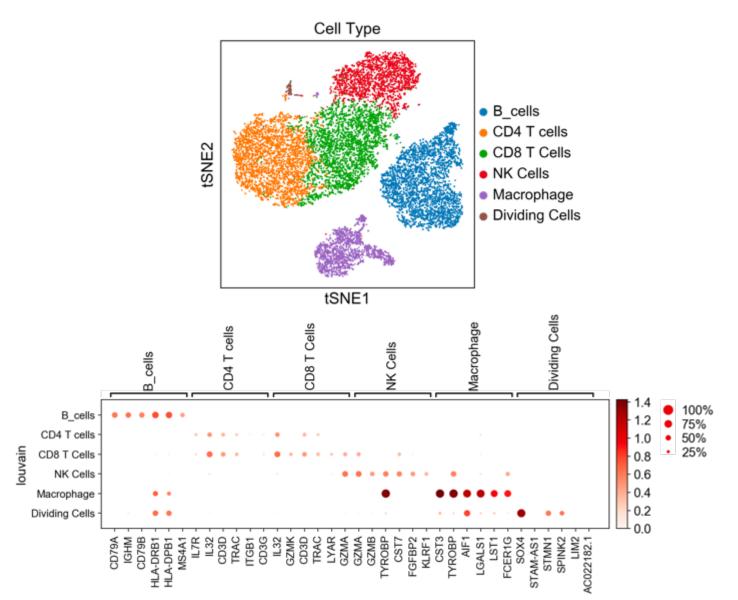
Gene-Cell Sparse Matrix



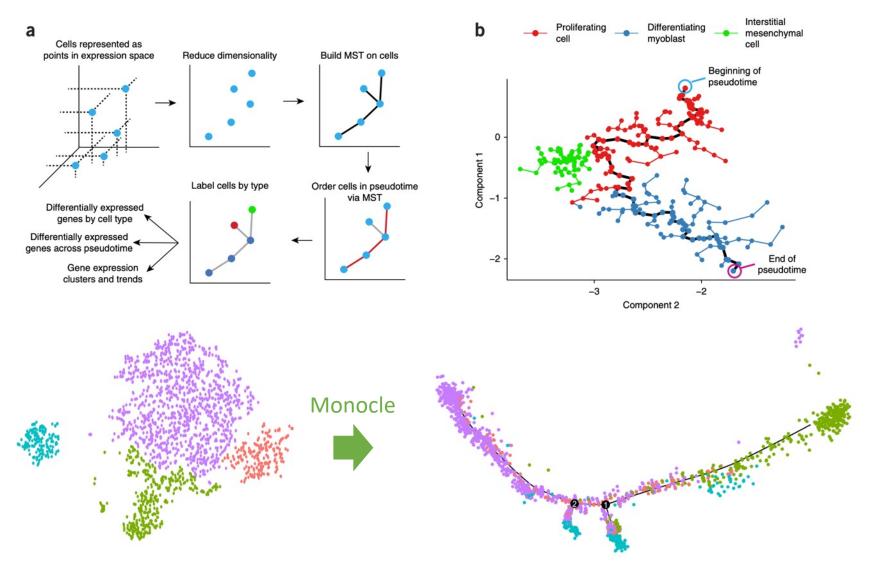
Тор	Gene Expression	US Wealth
1%	15%	35%
10%	55%	73%
20%	73%	86%

Cells

Basic output of scRNAseq pipeline



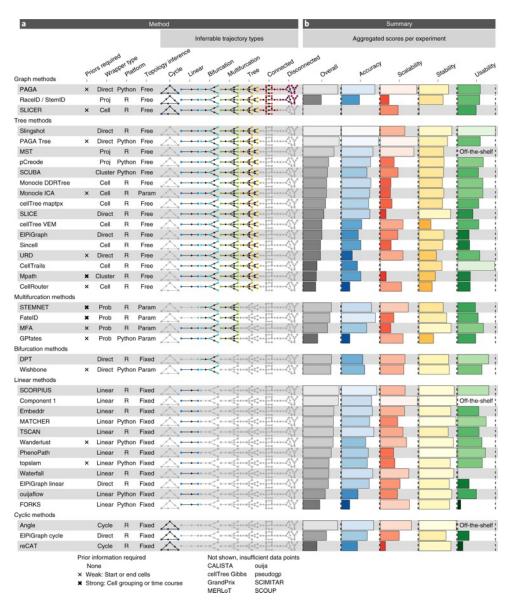
Pseudotime analysis



Pseudotime

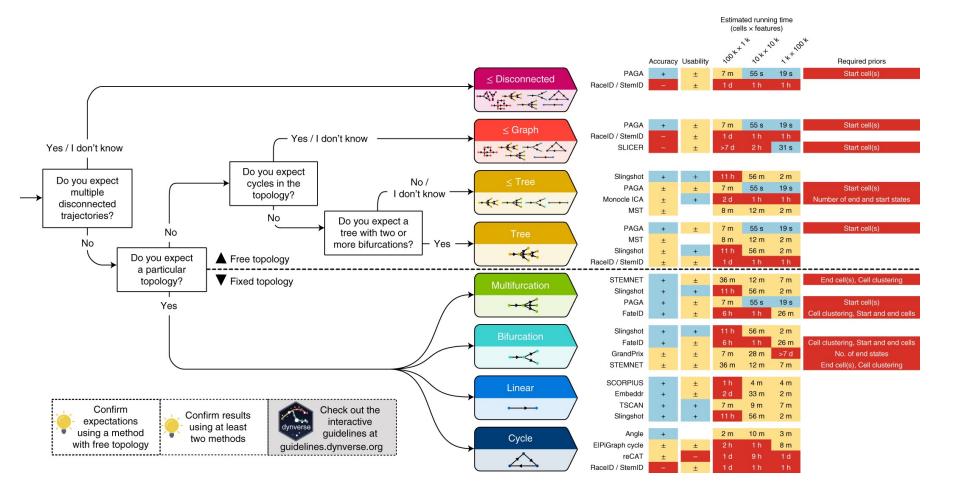
Dozens of methods developed

Vary in terms of feature selection, dimensionality reduction, tree construction, etc



Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

Pseudotime – which method to use?



Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

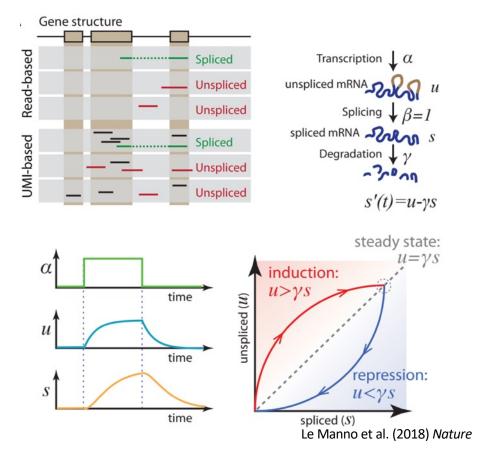
RNA Velocity

Estimates rates of change in mRNA levels by modeling nascent RNA synthesis

Quantifies spliced / unspliced

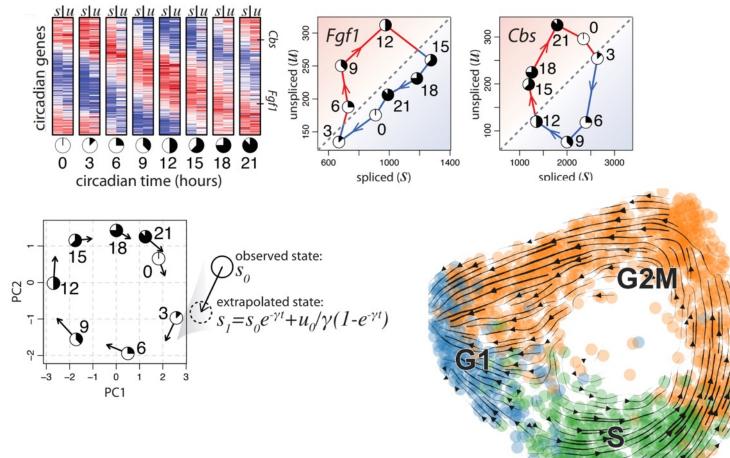
Models dynamics

CAVEATS: Gene annotations Cryptic exons unannotated intronic genes repetitive elements

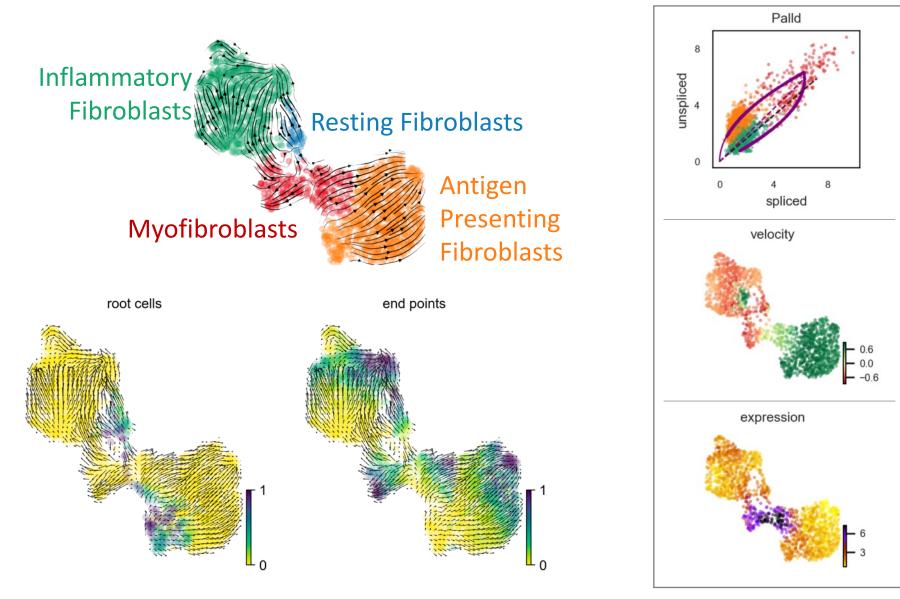


RNA Velocity

Bulk RNAseq from mouse circadian rhythm data



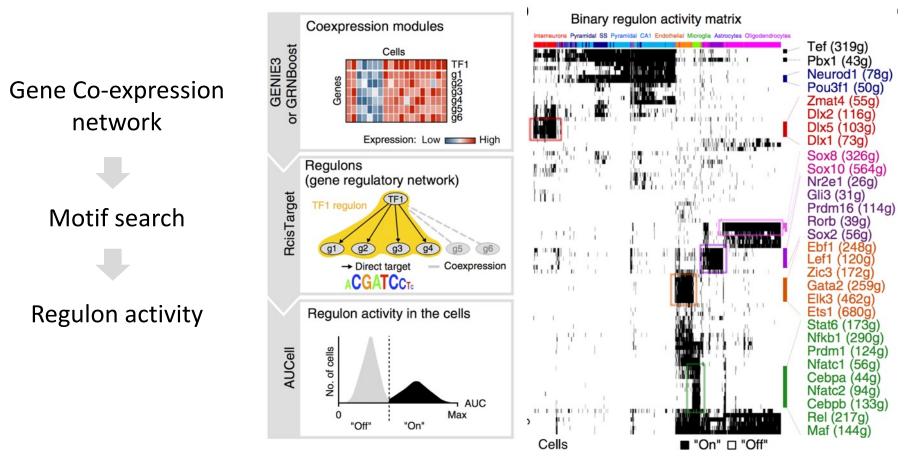
Inferring Differentiation Trajectories from RNA Velocity



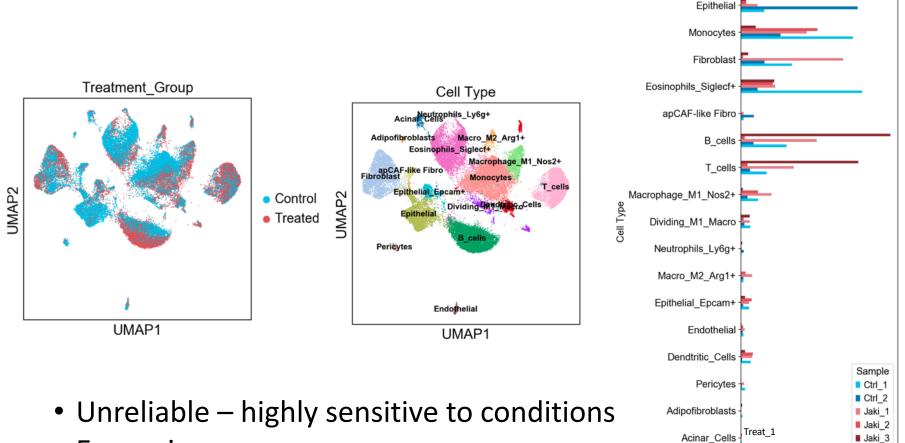
SCENIC

single-cell regulatory network inference and clustering

Transcription Factor Activity Inference



scRNAseq is a poor cytometry tool



Treat_2___ Treat_31000

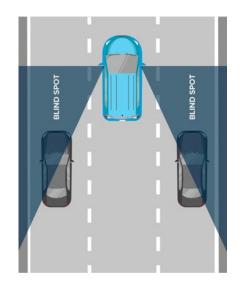
2000

3000

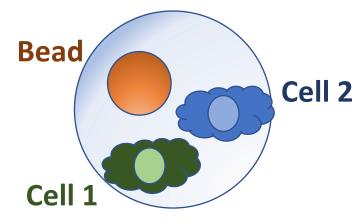
- Expensive
- Low throughput

Blind Spots

- Some cell types might be missed
 - Low mRNA count filtered from matrix
 - Early 10X Genomics Software (v2)
 - Defaulted to exclude lots of lymphocytes
 - Hard to dissociate from tissue
 - Fibroblasts
 - Cells might die quickly during prep
 - Stem cells
 - Fragile: (Acinar cells, Plasma cells)
 - High RNAse / protease content (Acinar, Neutrophils)
 - Peripheral blood neutrophils especially!!!
 - Doublets / Multiplets



Doublets



• <u>DoubletFinder</u> - [R] - Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. <u>BioRxiv</u>

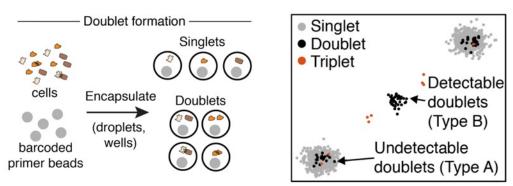
• <u>DoubletDecon</u> - [R] - Cell-State Aware Removal of Single-Cell RNA-Seq Doublets. [BioRxiv](DoubletDecon: Cell-State Aware Removal of Single-Cell RNA-Seq Doublets)

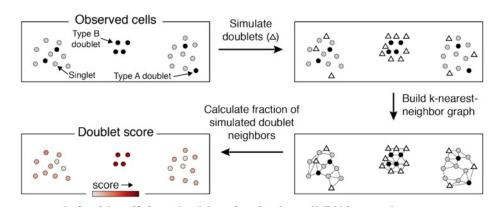
•<u>DoubletDetection</u> - [R, Python] - A Python3 package to detect doublets (technical errors) in single-cell RNA-seq count matrices. An <u>R implementation</u> is in development.

•<u>Scrublet</u> - [Python] - Computational identification of cell doublets in single-cell transcriptomic data. <u>BioRxiv</u>

 Proportional to concentration of cell suspension

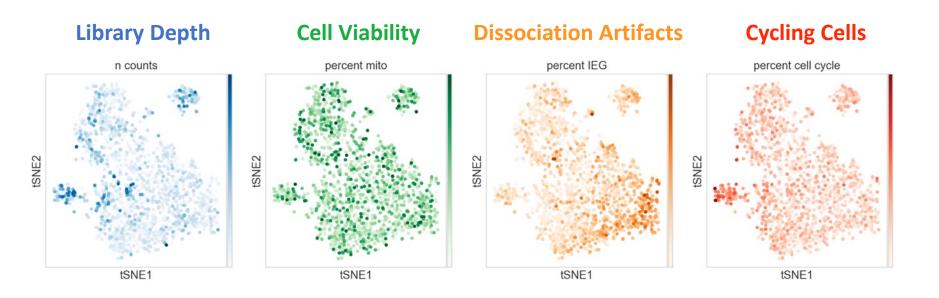
Scrublet



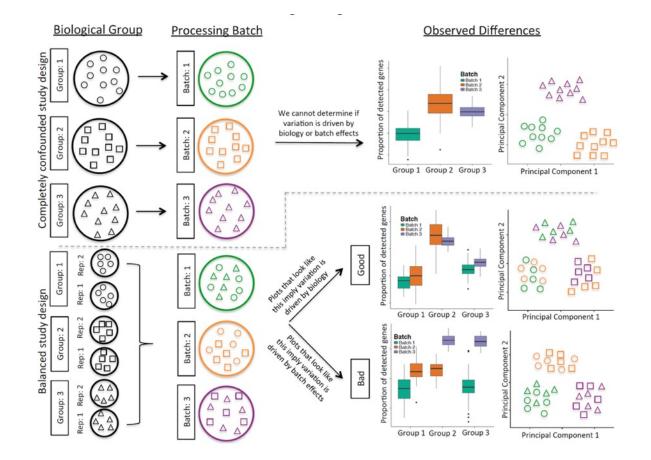


Wolock et al. (2018) bioRxiv

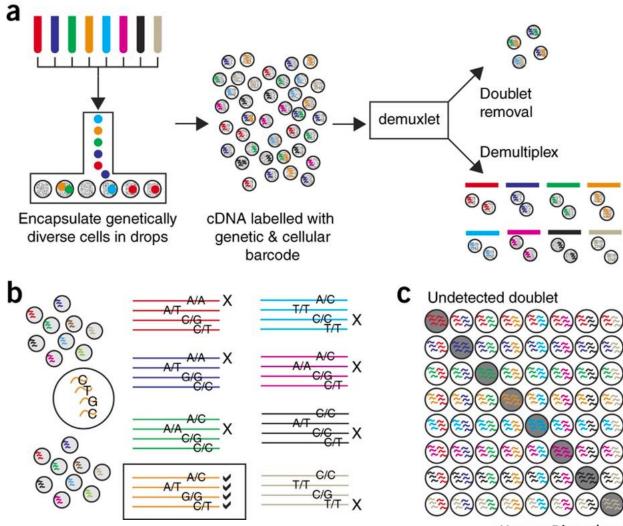
Sources of Measurement Noise



Batch effects and study design



Multiplexing Using Natural Genetic Variation Demuxlet



Jimmie Ye lab

Nature Biotechnology 36, 89-94 (2018)

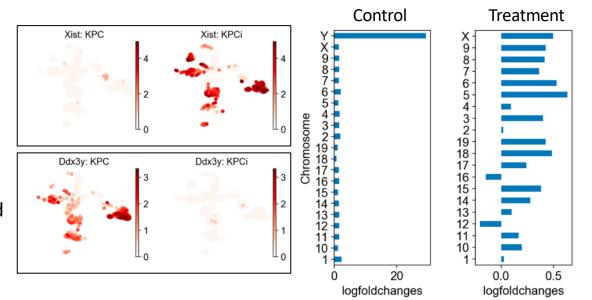
Sex – matched studies are helpful!

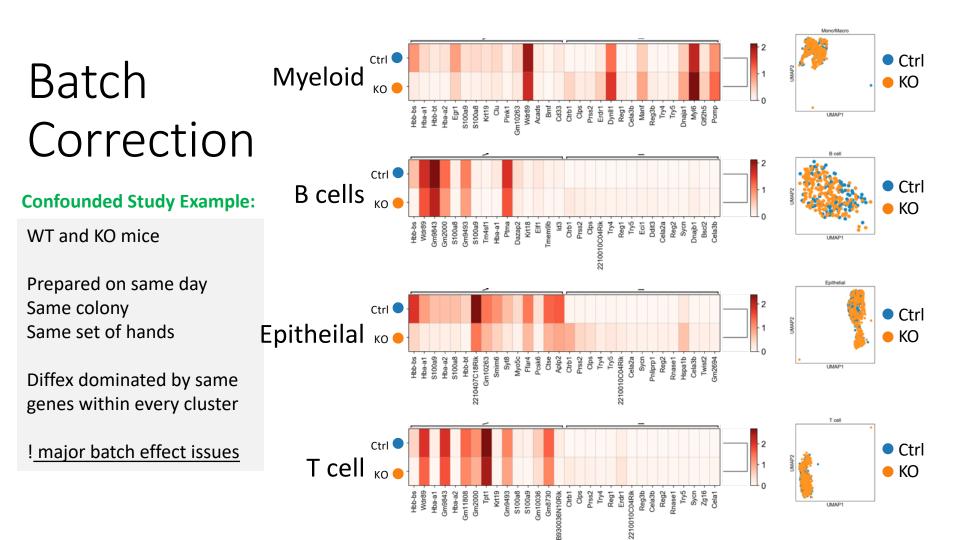
Major confounder: Male / Female

Treatment: Female Control: Male

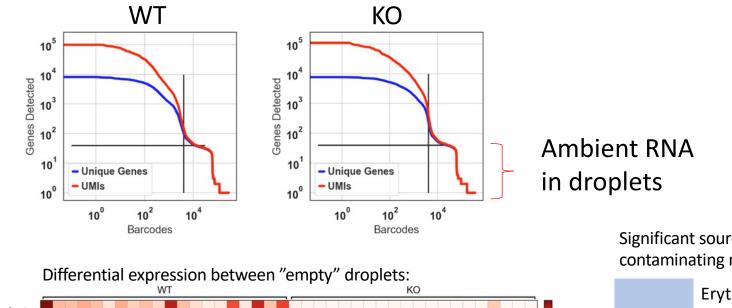
Consequence:

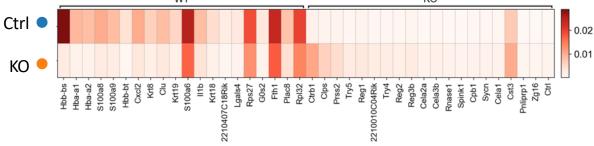
Unsupervised differential gene expression calling will be dominated by sex-specific expression. No way of separating this variable from the treatment variable





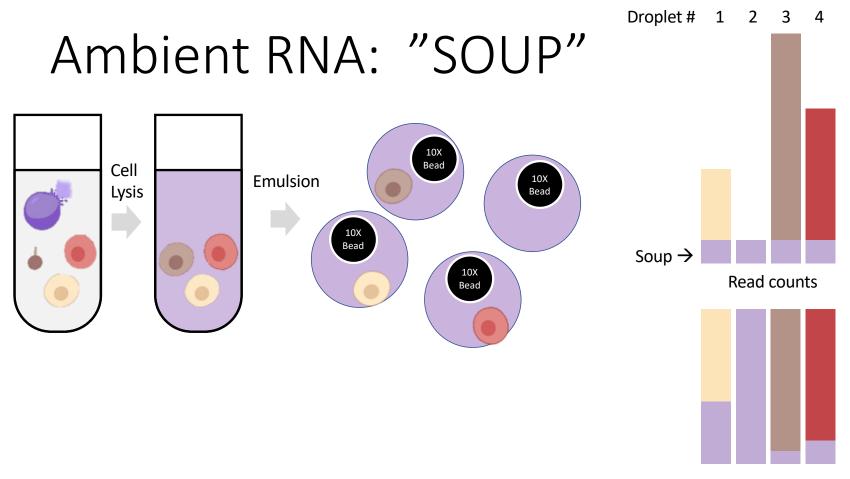
Controlling for batch effects



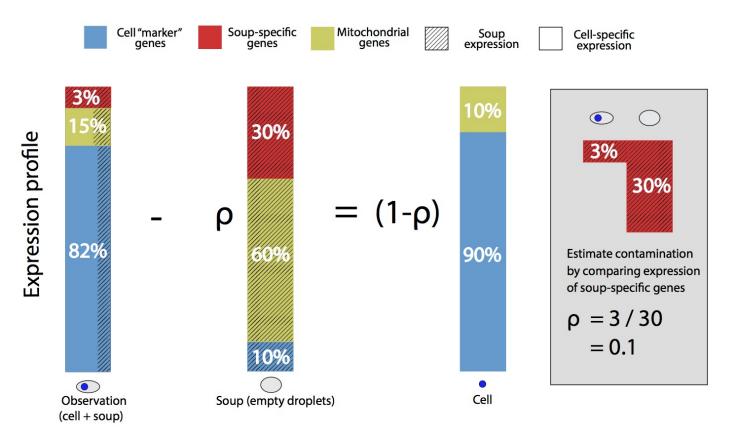


Significant sources of contaminating mRNA:

	Erythrocytes
WT:	Epithelial
	Granulocytes
KO:	Acinar cells



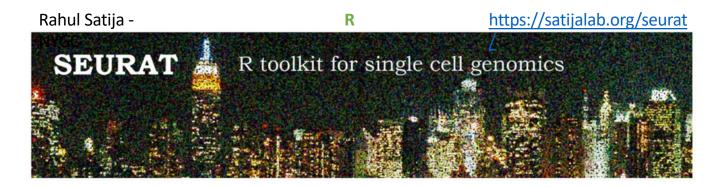
Proportion of droplet reads



Young and Behati (bioRxiv) 2018.

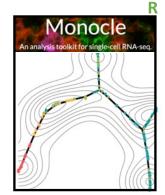
https://www.biorxiv.org/content/10.1101/303727v1

Getting started with your own analyses



Fabian Theis - München

Python



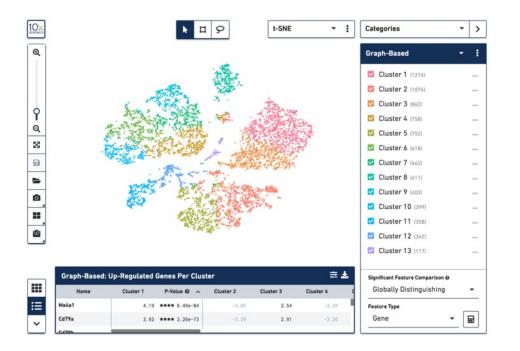
Liger

Macosko lab

Cole Trapnell – WashU

AWESOME SINGLE CELL RESOURCE <u>https://github.com/seandavi/awesome-single-cell</u>

Loupe Cell Browser



https://support.10xgenomics.com/single-cellgene-expression/software/downloads/latest

Can:

- Quickly visualize genes
- Do guided clustering via marker genes / tSNE selections
- Calculate Differential Expression
- Export cells and gene sets for reanalysis on Cellranger (cluster)

Can't

- Redo unsupervised clustering / tSNE / UMAP
- Repeat PCA / gene set selection
- Pseudotime, other fancy things

The Best Site On the Internet. Probably.

<u>https://github.com/Teichlab/scg_lib_structs</u>

Detailed visual guides to dozens of singlecell genomics methods

Adapter and primer sequences:

Barcoded Tn5 sequence s5: 5'- TCGTCGGCAGCGTCTCCACGC[8-bp Tn5 index]GCGATCGAGGACGGCAGATGTGTATAAGAGACAG -3' Barcoded Tn5 sequence s7: 5'- GTCTCGTGGGCTCGGCTGTCCC[8-bp Tn5 index]CACCGTCTCCGCCTCAGATGTGTATAAGAGACAG -3' Tn5 binding site 19-bp Mosaic End (ME) bottom: 5'- /Phos/AGATGTGTATAAGAGACAG -3' P5 index primer entry point (s5): 5'- TCGTCGGCAGCGTCTCCACGC -3' P7 index primer entry point (s7): 5'- GTCTCGTGGGCTCGGCTGTCCCTGTCC -3' P5 index primer: 5'- AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTCTCCCACGC -3' P7 index primer: 5'- CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGGCTGTCCCTGTCC -3' Read 1 sequencing primer: 5'- GCGATCGAGGACGGCAGATGTGTATAAGAGACAG -3' Index 1 sequencing primer (i7): 5'- CTGTCTCTTATACACATCTGAGGCCGGGAGCGGTG -3' Read 2 seuquencing primer: 5'- CACCGTCTCCGCCTCCCAGATGTGTATAAGAGACAG -3' Product 1 (s5 at both ends, not amplifiable due to semi-suppressive PCR:

Product 2 (s7 at both ends, not amplifiable due to semi-suppressiev PCR):

"What I cannot create, I do not understand." ––Feynman

Hacking Droplets

scifi-RNA-seq

Combinatorial fluidic indexing

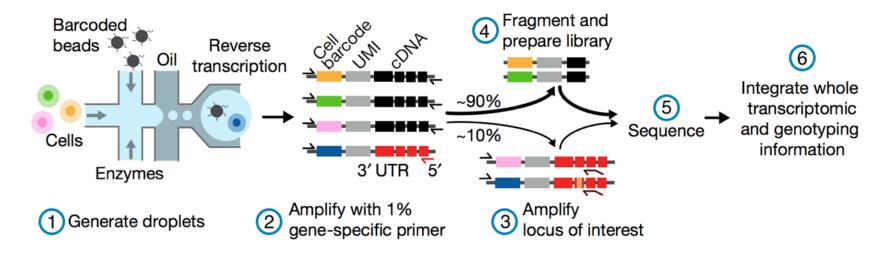
- Massive improvement in # cells
- Up-front barcoding in plates via RT
- Swaps chemistry of 10X Genomics:
 - Uses 10X Gel beads
 - Ligation instead of RT
- Up to 150,000 cells per channel
 - (15X increase)

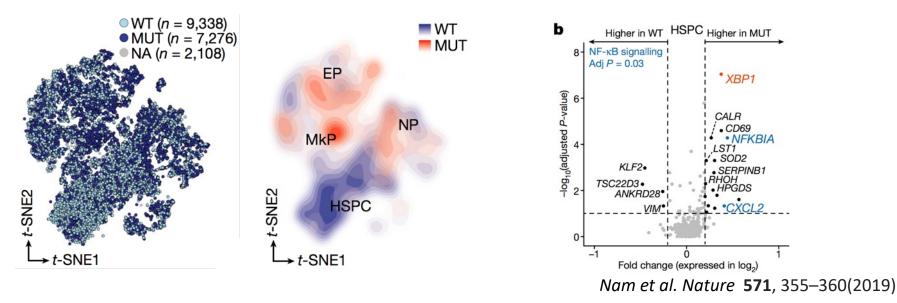
scifi-RNA-seg method design Round 1 indexing by reverse transcription on microwell plate phos PBS UMI Round1 TTT...TTTVN CCC AAA...AAABN Round 2 indexing by thermoligation in microfluidic droplets P5 Round2 pR1N PBS UMI Round1 TTT...TTTVN CCC ddC Bridge Oligo Template switching and cDNA enrichment P5 Round2 pR1N PBS UMI Round1 TTT...TTTVN CCC GGG P5 Round2 pR1N PBS UMI Round1 TTT...TTTVN Tagmentation with custom transposome and library enrichment P5 Round2 pR1N PBS UMI Round1 TTT...TTTVN **R2N** Tagmentation custom i7-only Tn5 AAA...AAABN Sample P5 Round2 pR1N PBS UMI Round1 TTT...TTTVN R2N Next-generation sequencing (Illumina NovaSeq 6000) Composite cell barcode Index 1 [8b] Round1 TTT...TTTVN Round2 pR1 Sample AAA...AAABN

Read 2 [78]

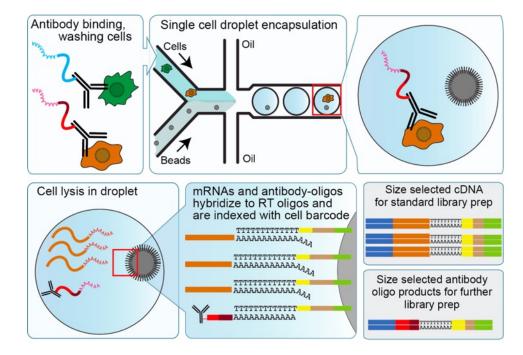
Paul Datlinger, André F Rendeiro, Thorina Boenke, Thomas Krausgruber, Daniele Barreca, Christoph Bock doi: https://doi.org/10.1101/2019.12.17.879304

Genotyping of Transcriptomes





CITE-Seq / REAP-Seq



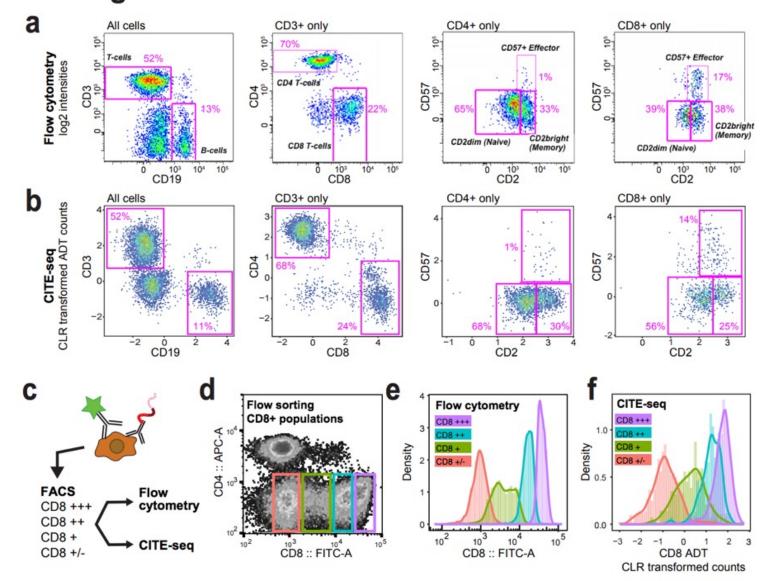
Antibody Derived Tag (ADT)

sequenced as part of normal 10X run

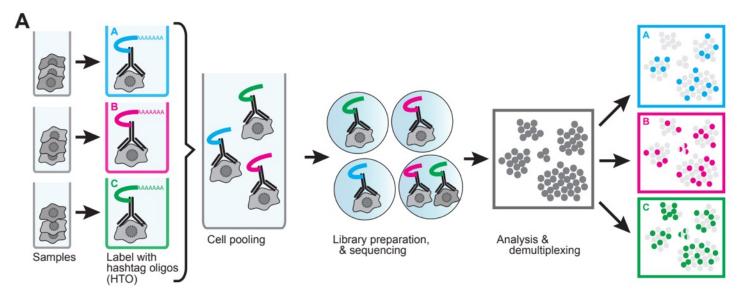
Enables:

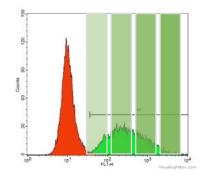
- Simultaneous mRNA + Protein Abundance
- Increased sensitivity to individual targets
- 'Superloading'

CITE-Seq / REAP-Seq

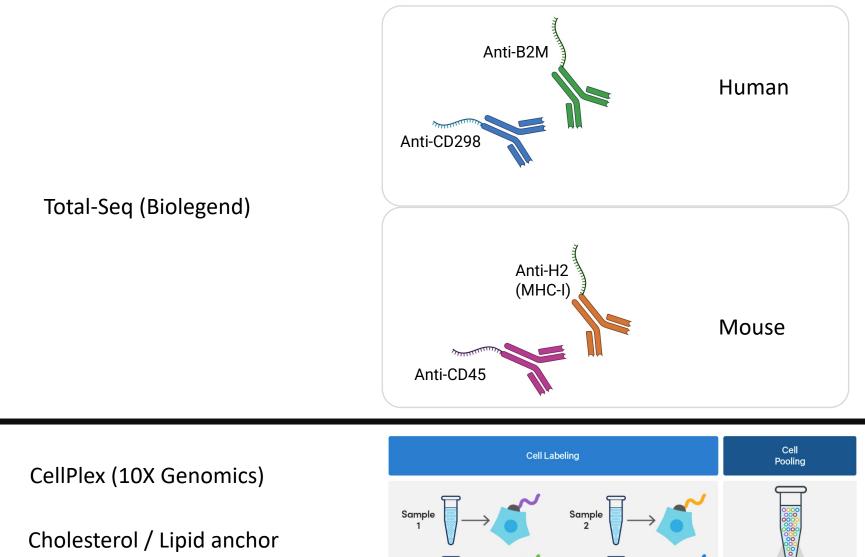


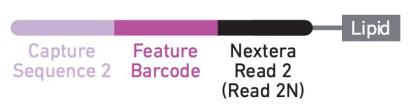
Multiplexing with ADTs: "Cell Hashing"

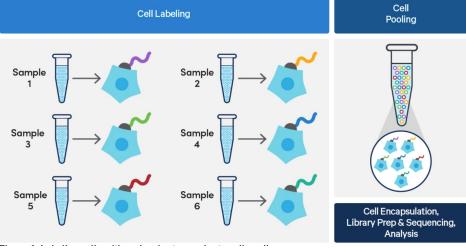


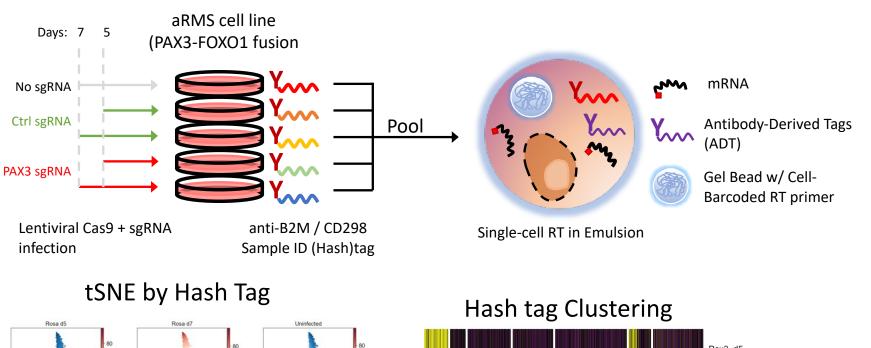


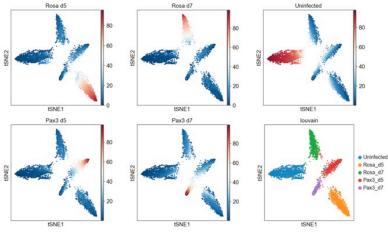
Stoeckius, NYGC

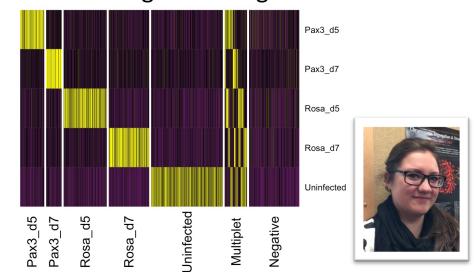




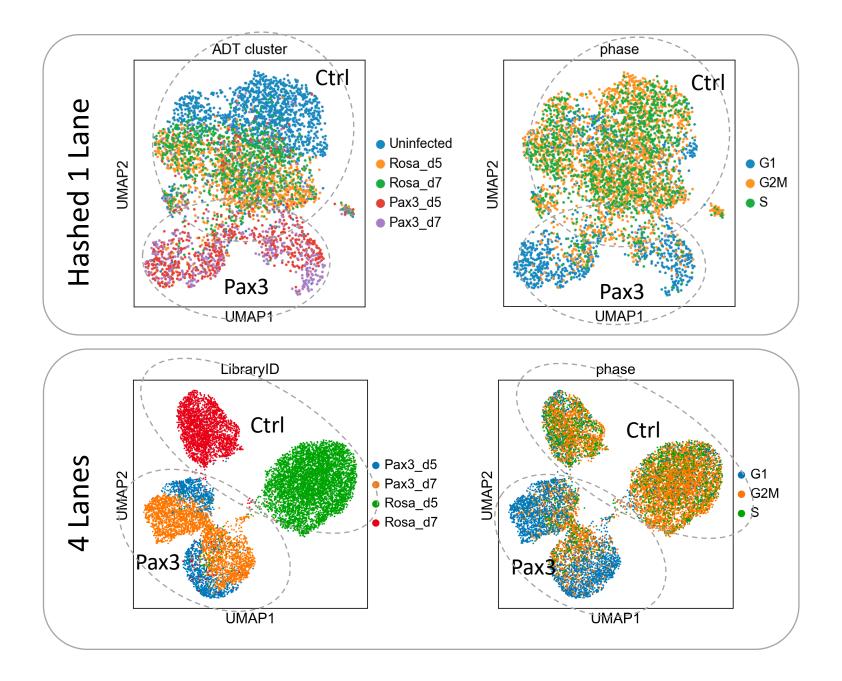




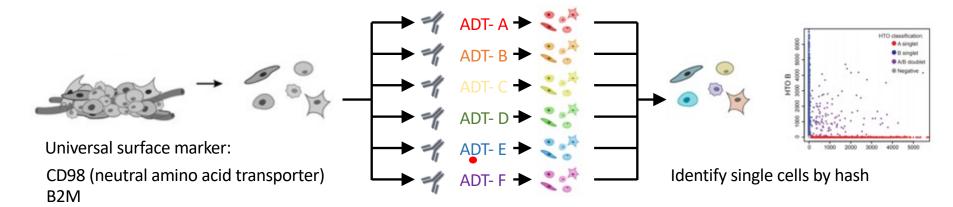


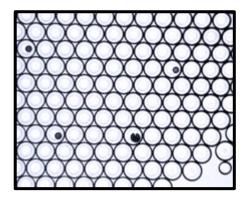


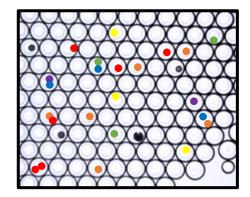
Martyna Sroka, Vakoc Lab

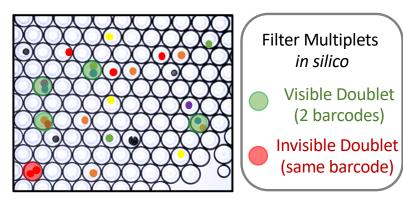


Superloading with ADTs: "Cell Hashing"



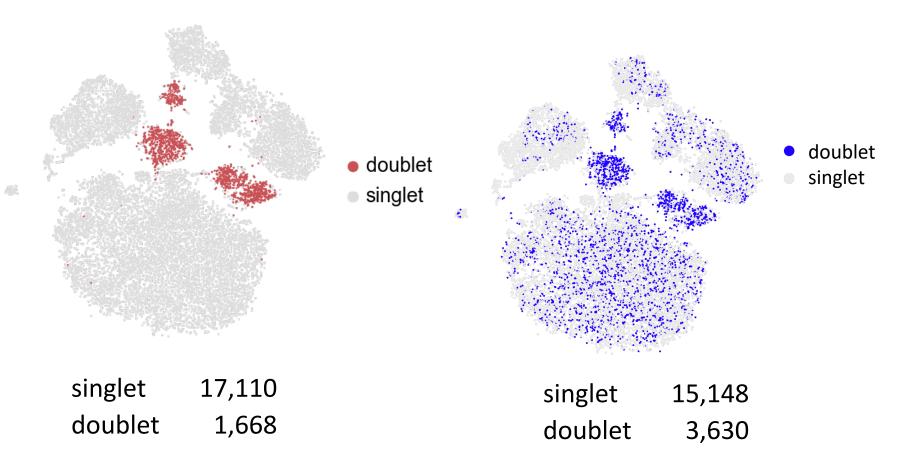




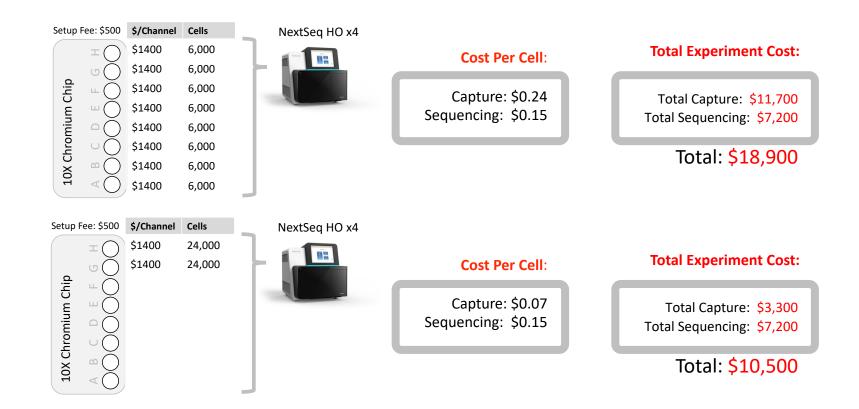


Doublet Detection by Cell Cluster

Doublet Detection by Hash Tag



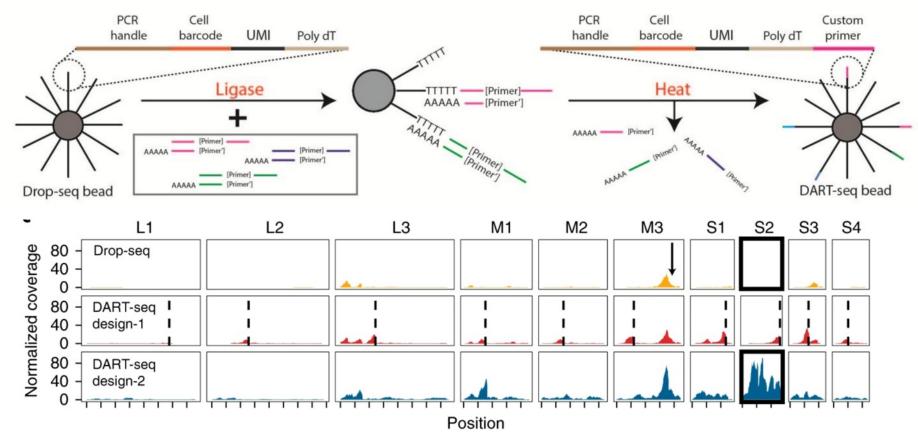
Superloading with Cell Hashing Benefits



DART-seq

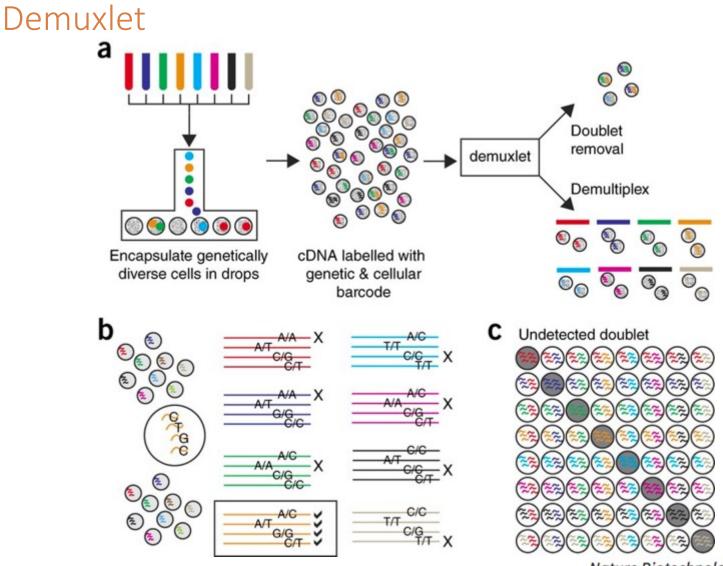
Droplet-Assisted RNA Targeting by single-cell sequencing

- Modification of barcoded bead to prime non-poly(A) transcripts
- Ligate gene-specific primers to subset of oligo-dT sites via bridge oligo
 - Careful titration of primers necessary



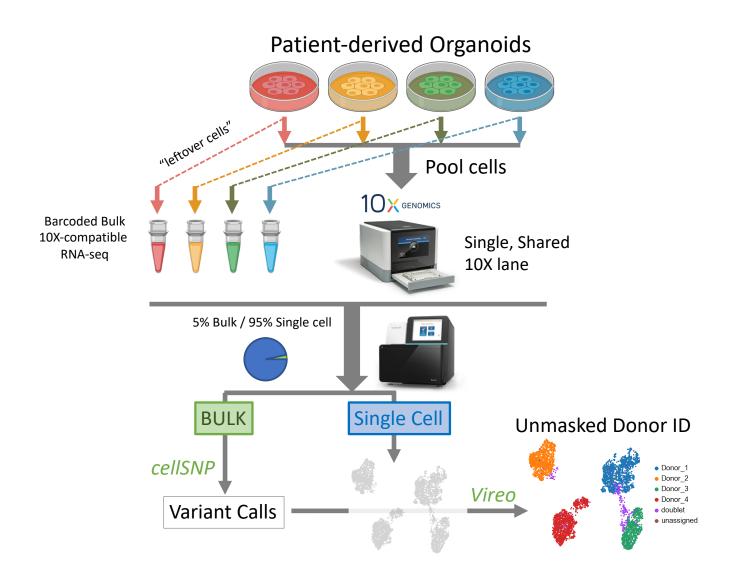
Saikia, M., Burnham, P., Keshavjee, S.H. *et al.* Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells. *Nat Methods* **16**, 59–62 (2019). https://doi.org/10.1038/s41592-018-0259-9

Multiplexing Using Natural Genetic Variation

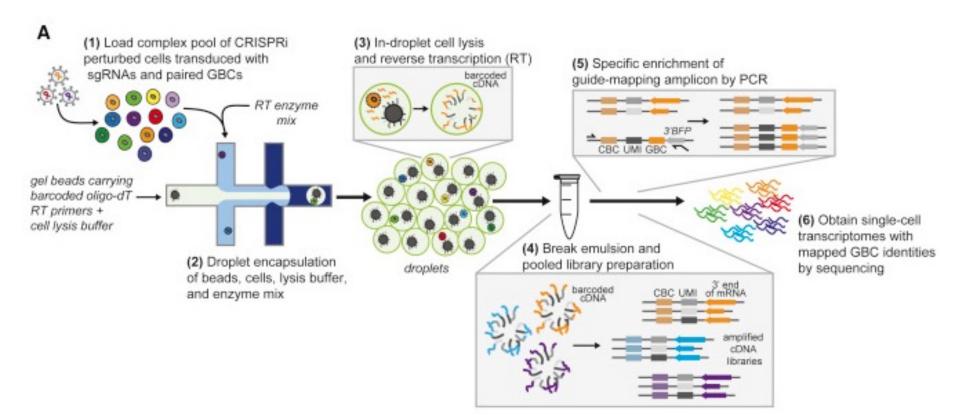


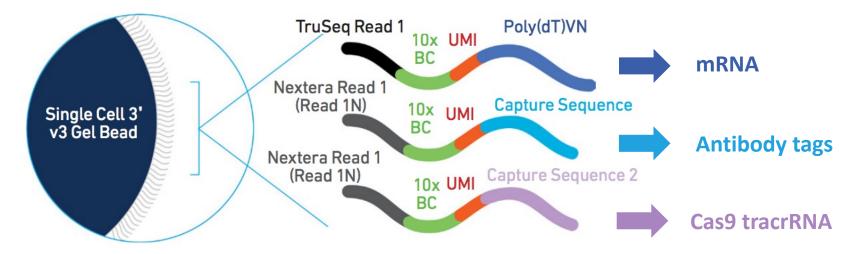
Jimmie Ye lab

Nature Biotechnology 36, 89-94 (2018)



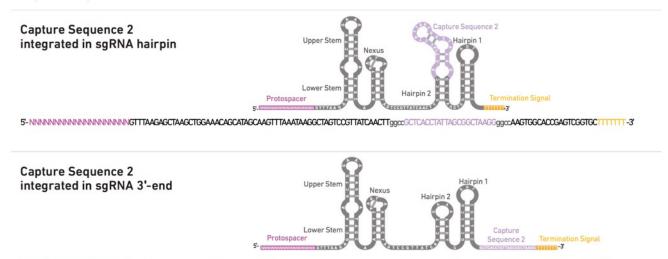
Perturb-Seq





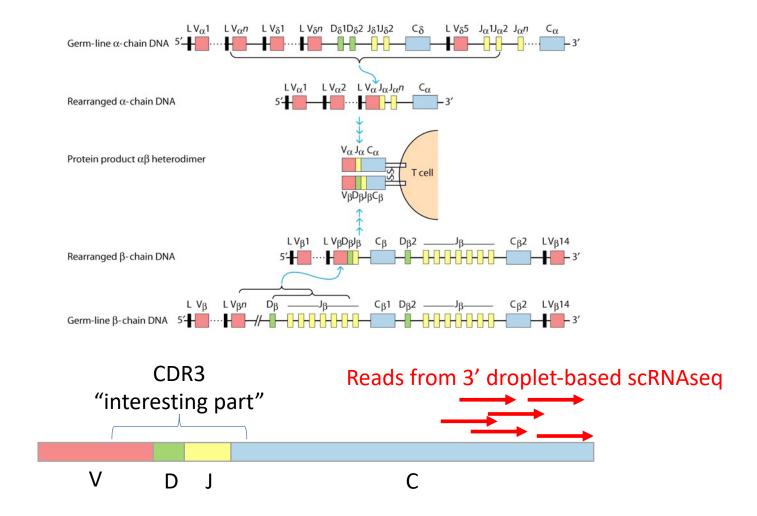
- Multiple RT primer sequences per bead
- High efficiency capture of antibody tags, CRISPR guides

Capture Sequence 2 on Gel Bead: 5'-CCTTAGCCGCTAATAGGTGAGC-3'

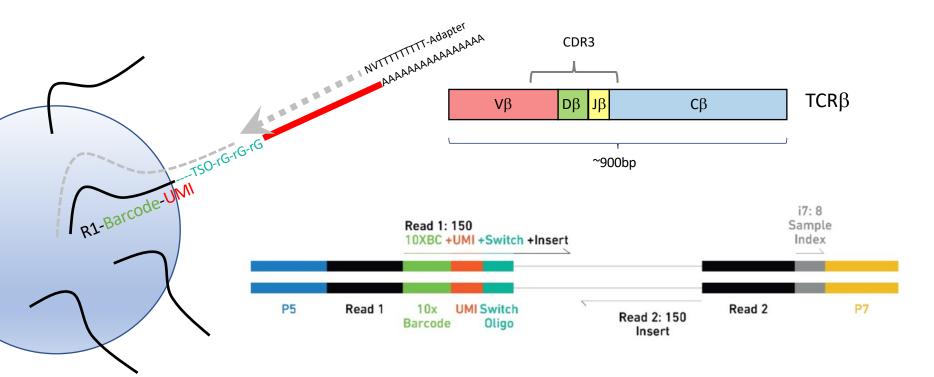


5-NNNNNNNNNNNNNNNNNNNNNNTTTAAGAGCTAAGCTGGAAACAGCATAGCAAGCTTAAATAAGGCTAGTCCGTTATCAACTTgaaaAAGTGGCACCGAGTCGGTGCGCTCACCTATTAGCGGCTAAGGTTTTTA-3

TCR/BCR Profiling

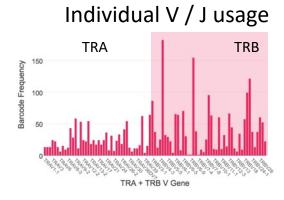


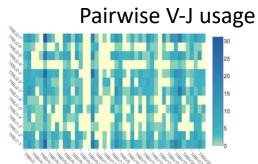
5'-Barcoded Libraries

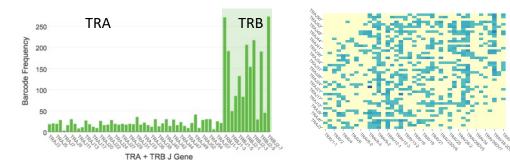


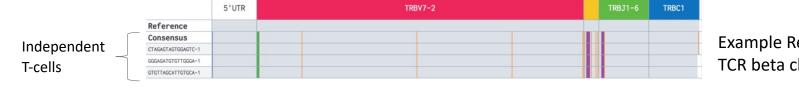
- Problem: standard transcriptome libraries have strong 3'-bias
- CDR3 mapping requires 5'-Barcoded library
- Random fragmentation to sample different 3'-ends of reads
- Require much longer reads (300bp) at a depth of 5,000X / cell

10X VDJ output example







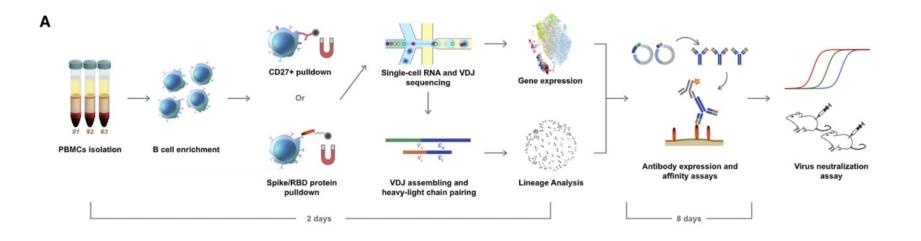


Example Rearranged TCR beta chain

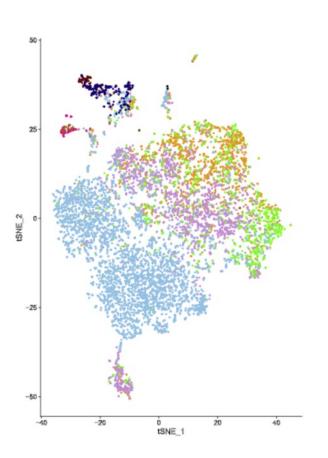
AA: CASRRGGGKTYEQYF CDR3 TGTGCCAGCCGCGGGGGGGGGGGGAAAACCTACGAGCAGTACTTC NT:

Cell

Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells



- Switched memory B cells
- Non-switched memory B cells
- Exhausted B cells
- Naive B cells



Natural killer cells

Monocytes
Dendritic cells

T cells

Rapid Filter for Neutralizing antibody candidates:

VDJ sequencing:

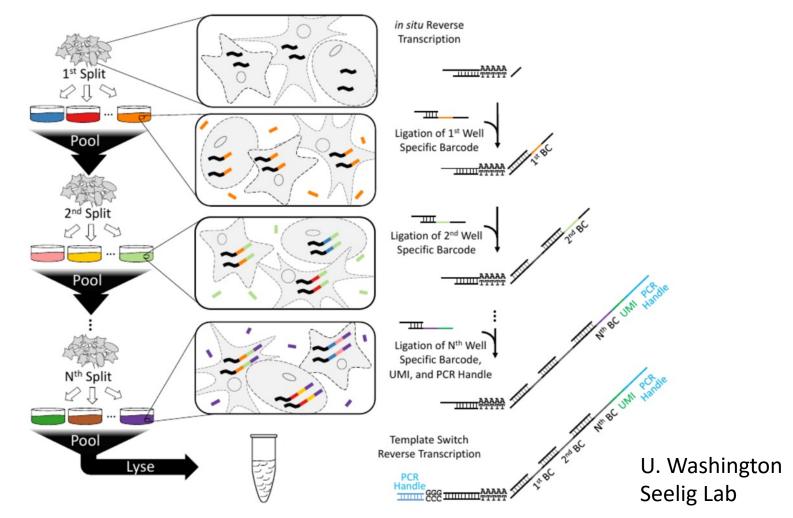
- 1. Select only IgG1 isotypes
- 2. Clones with multiple observed cells
- 3. Clones with somatic hypermutation

Gene expression analysis

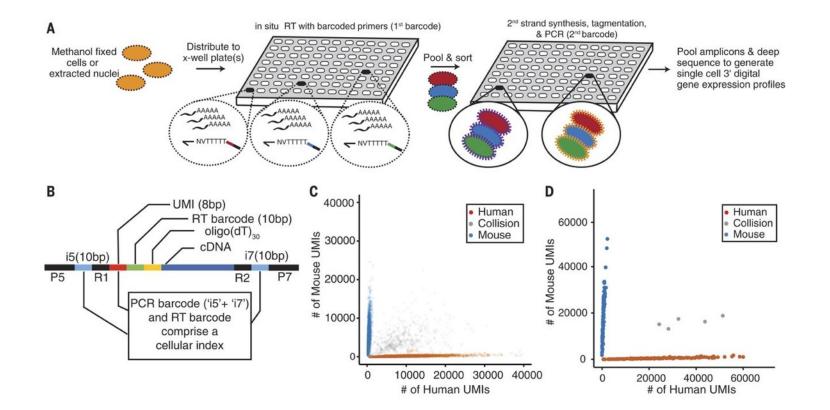
- 1. Exclude exhausted and naïve phenotypes
- 2. Favor memory and plasma phenotypes

Other high-throughput platforms

Combinatorial Indexing Split-Seq

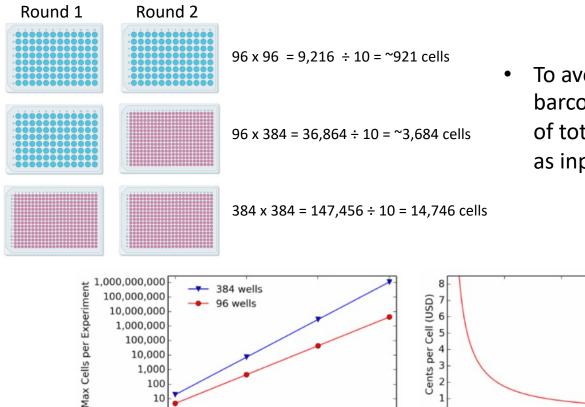


Combinatorial Indexing sci-Seq



U. Washington Shendure Lab

Combinatorial Scaling



To avoid random sampling of same barcode combinations, use ~10% of total theoretical combinations as input

Enormously scalable Can achieve <\$0.01 per cell

2

Number of Split-Pool Rounds

10 1

1

Labor intensive Significant 'boot-up' cost Significant validation cost

150,000

50.000

0

100,000

Number of Cells

Who can afford that much sequencing, anyway?

200.000

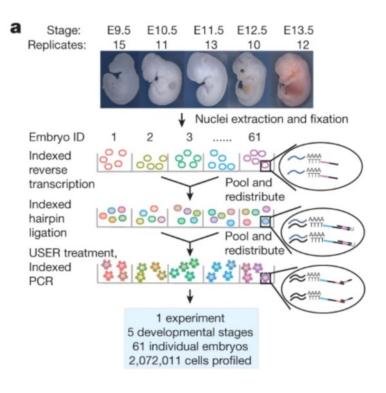
Article Published: 20 February 2019

The single-cell transcriptional landscape of mammalian organogenesis

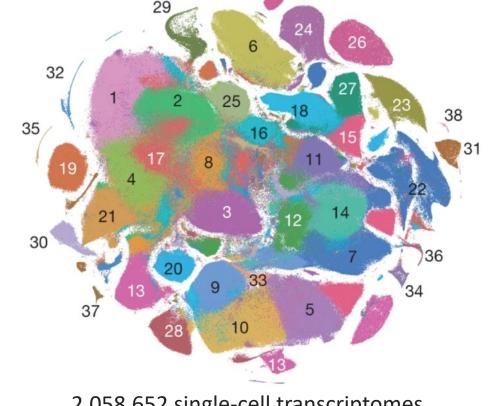
Junyue Cao, Malte Spielmann, Xiaojie Qiu, Xingfan Huang, Daniel M. Ibrahim, Andrew J. Hill, Fan Zhang, Stefan Mundlos, Lena Christiansen, Frank J. Steemers, Cole Trapnell 🖂 & Jay Shendure 🖂

Nature 566, 496–502(2019) Cite this article

sci-RNA-seq3



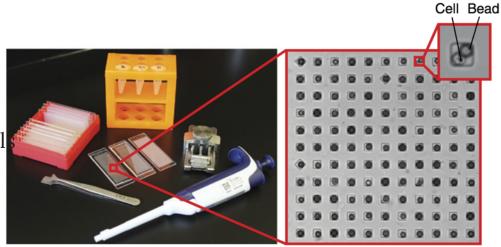
Mouse embryonic development

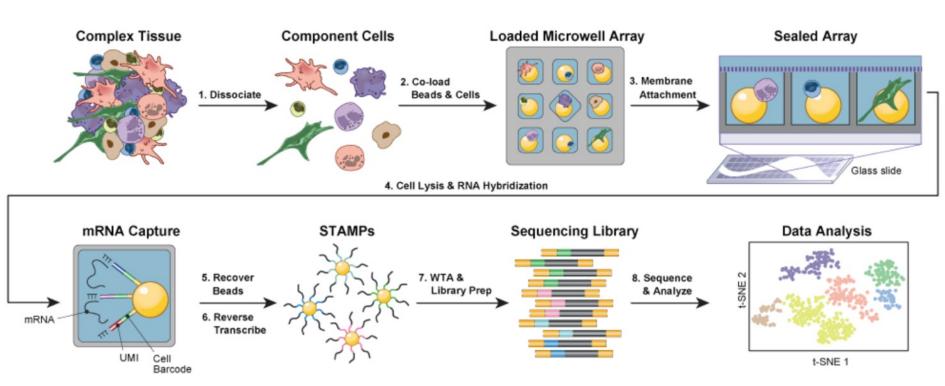


2,058,652 single-cell transcriptomes

Seq-Well

PDMS array of ~86,000 subnanoliter well Sized to fit 1 bead per well Drop-Seq style barcoded beads Sealed chamber for each cell

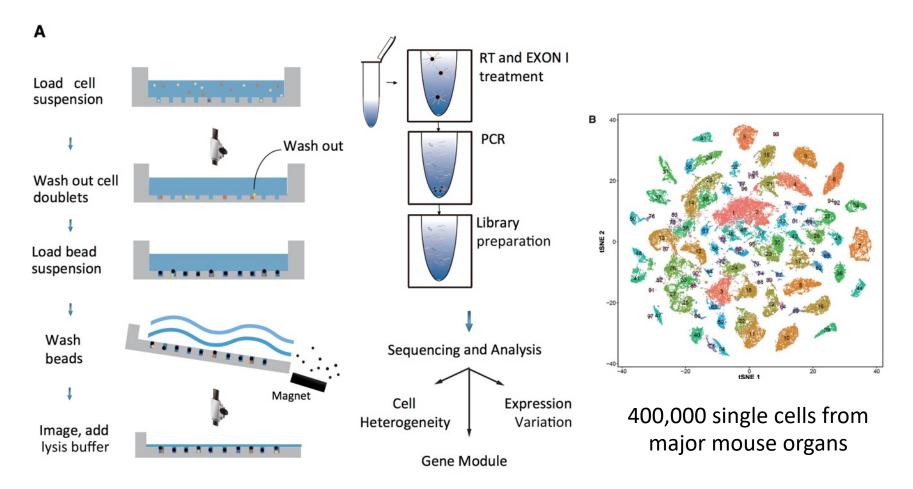




Gierahn et al. Nature Methods 14, 395–398 (2017)

Mapping the Mouse Cell Atlas by Microwell-Seq

Xiaoping Han,^{1,12,13,*} Renying Wang,^{1,12,13} Yincong Zhou,^{2,12,13} Lijiang Fei,^{1,12,13} Huiyu Sun,^{1,12,13} Shujing Lai,^{1,12,13} Assieh Saadatpour,¹¹ Ziming Zhou,^{1,12} Haide Chen,^{1,12} Fang Ye,^{1,12} Daosheng Huang,¹ Yang Xu,¹ Wentao Huang,¹ Mengmeng Jiang,^{1,12} Xinyi Jiang,^{1,12} Jie Mao,³ Yao Chen,⁴ Chenyu Lu,⁵ Jin Xie,⁶ Qun Fang,⁷ Yibin Wang,⁸ Rui Yue,⁸ Tiefeng Li,³ He Huang,^{9,12} Stuart H. Orkin,¹⁰ Guo-Cheng Yuan,¹¹ Ming Chen,^{2,12} and Guoji Guo^{1,9,12,14,*}

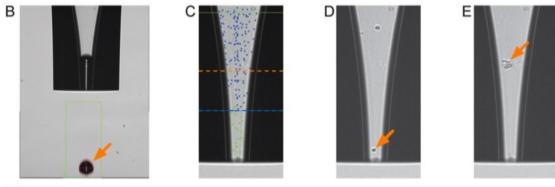


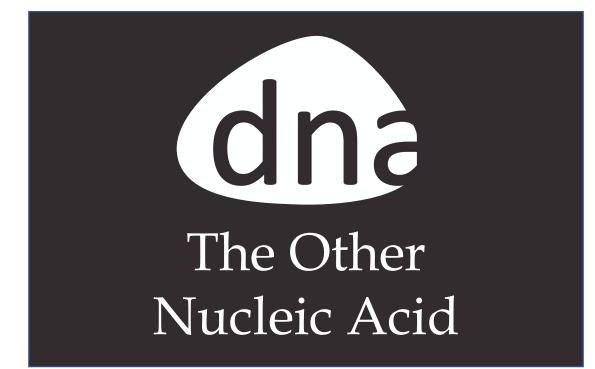
Array-based formats

Cell / reagent arrayers

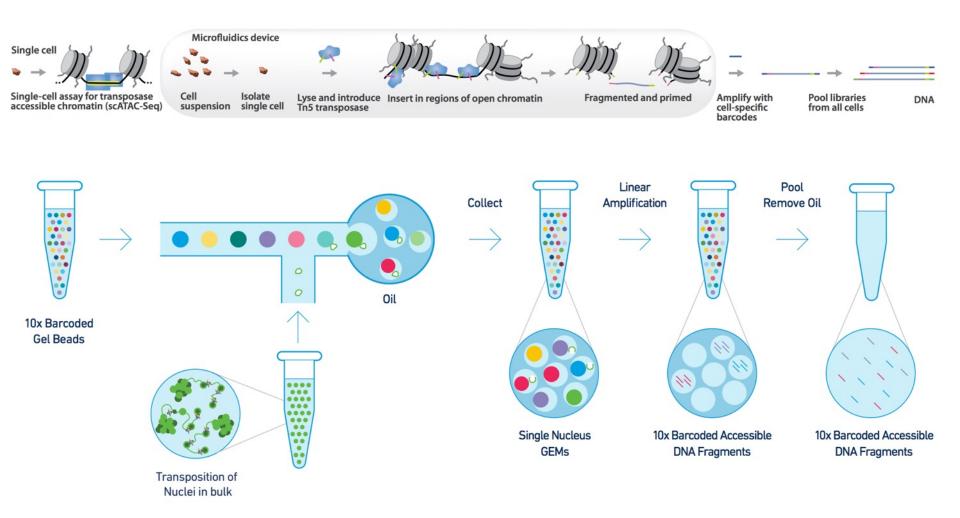
Eg. Scienion sciFlexarray Scienion cellenONE

Custom workflows Imaging-based sorting / rejection

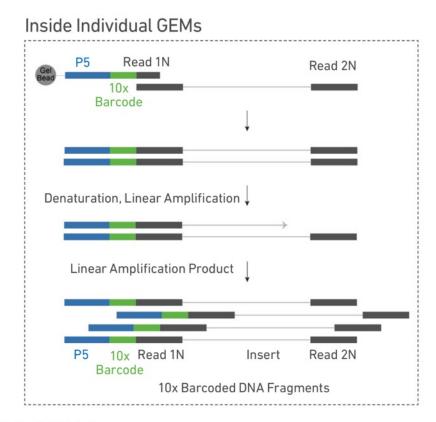




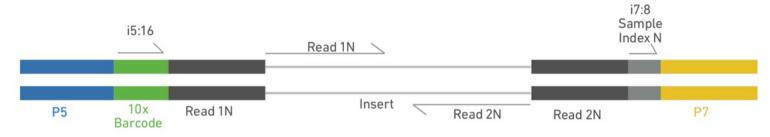
10X Genomics Single Cell ATAC

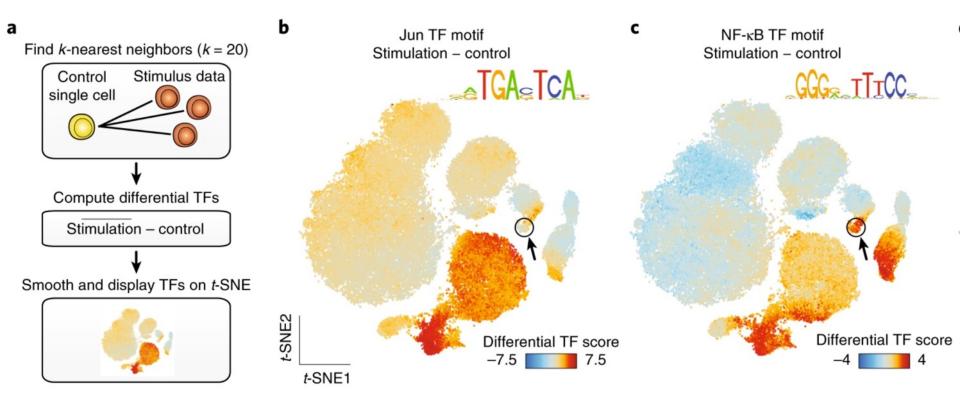


10X Genomics Single Cell ATAC

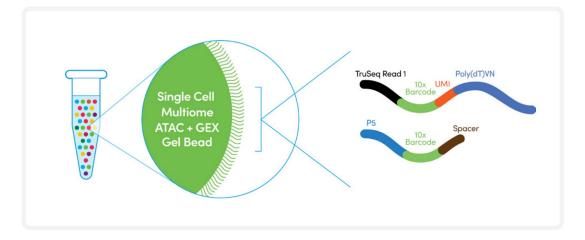


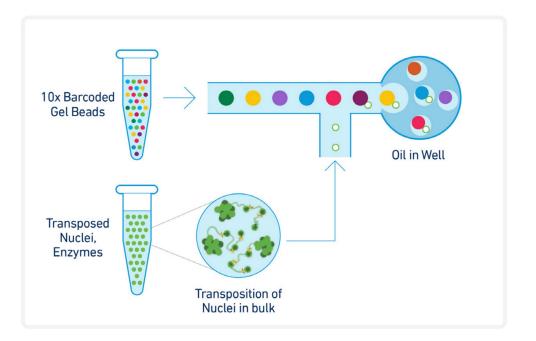
Chromium Single Cell ATAC Library



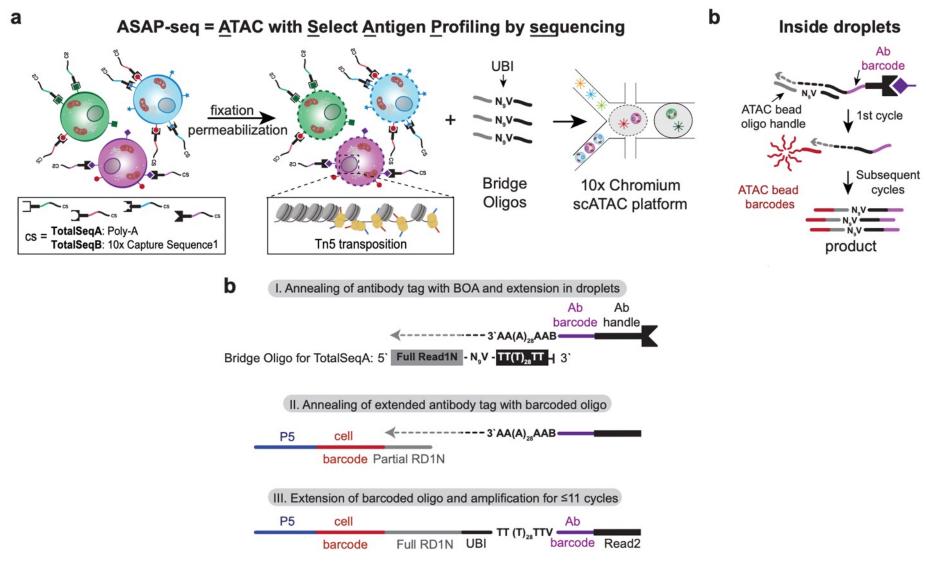


10X Genomics Multiome



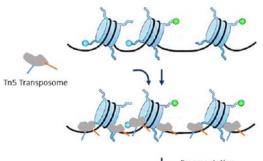


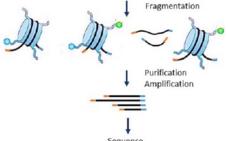
ASAP-seq



Mimitou et al. bioRxiv (2020) t doi: https://doi.org/10.1101/2020.09.08.286914

sci-ATAC

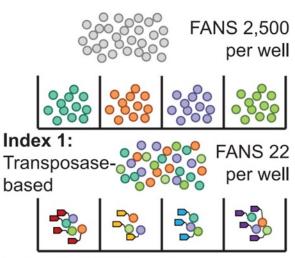




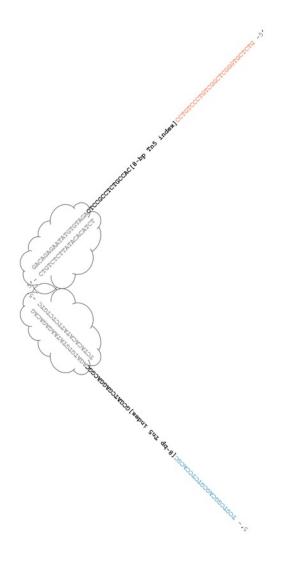
Sequence

Round 1: Internally Barcoded Tn5 transposomes

Round 2: Barcoded PCR primers



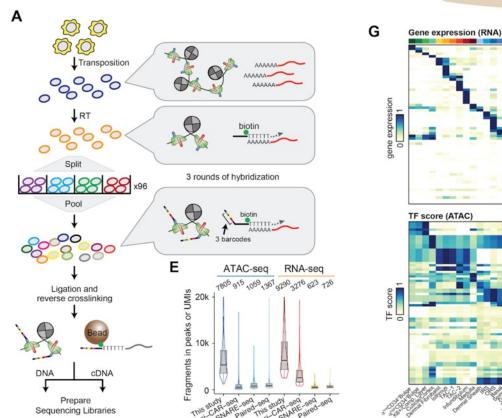
Index 2: PCR-based



5'- AATGATACGGCGACCACCGAGATCTA	CACNNNNNNNTC	GTCGGCAGCGTCT	CCACGCNNNNNNNGCGATCG	AGGACGGCAGATGTGTATAAGAGACA	GXXXXXXX XXXXXXX	CTGTCTCTTATACACATCTGA	GGCGGAGACGGTGNNNNNNNGGACAGG	ACAGCCGAGCCCACG	AGACNNNNNNNAT	CTCGTATGCCGTCTTCTGCTTG -3'	
3' - TTACTATGCCGCTGGTGGCTCTAGAT	GTGNNNNNNNAG	CAGCCGTCGCAGA	GGTGCGNNNNNNNCGCTAGC	TCCTGCCGTCTACACATATTCTCTGT	CXXXXXXXXXXXXXX	GACAGAGAATATGTGTAGACT	CCGCCTCTGCCACNNNNNNNCCTGTCCC	TGTCGGCTCGGGTGC	TCTGNNNNNNNTA	GAGCATACGGCAGAAGACGAAC -5'	
Illumina P5	i5	s5	8 bp	ME	gDNA	ME	8 bp	s7	i7	Illumina P7	
			Tn5 barcode				Tn5 barcode				

SHARE-Seq

- Same-cell scRNA/ATAC
- Combinatorial split-pool barcoding of adapters



А

SHARE-seq

Granula Spinous -Basal Isthmus Infundibulur K6+ bulge Sebaceous gland ahighCD34+ bulge Dermis CD34* bulge Dermal sheath macrophages ORS Companion layer Dermal fibroblast Hair shaft 00 (medullla/cortex/cuticle Melanocyte **Dermal Papi**

> Krt15 Lgr6 Krt6a Top2a

Shh

Tnni1

Lor

Foxc1 Sox9 Cd36 Cd34

Pde3a Sox2 Itga9

Dock2 Tyr Mgst1

Nfic Nfatc1 Id3 Tcf4

DIx3

Fos Trp63

Sox9

Mef2a Rela Cebpe Runx1 Mitf

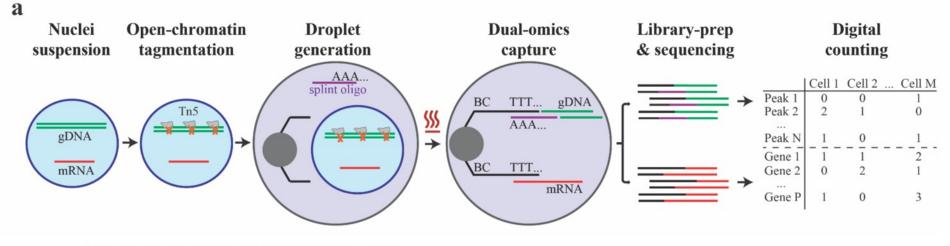
Myog Gata1

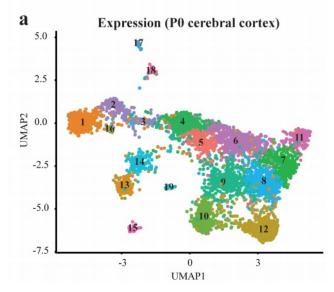
Wnt10b

Selenbp1 Lgr5 Krt1

Ma et al. Cell. 2020 Oct 20;S0092-8674(20)31253-8. doi:10.1016/j.cell.2020.09.056.

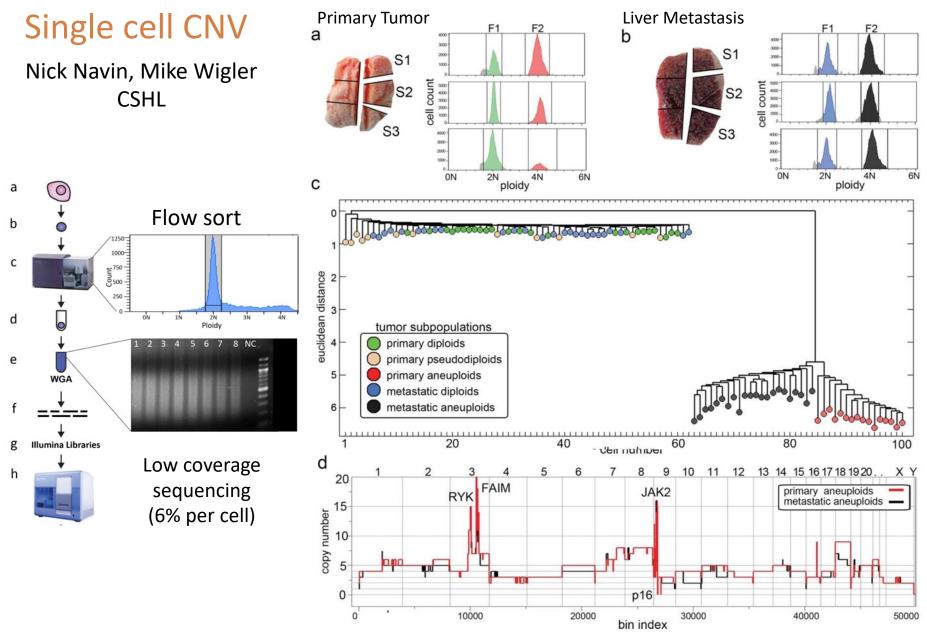
SNARE-seq





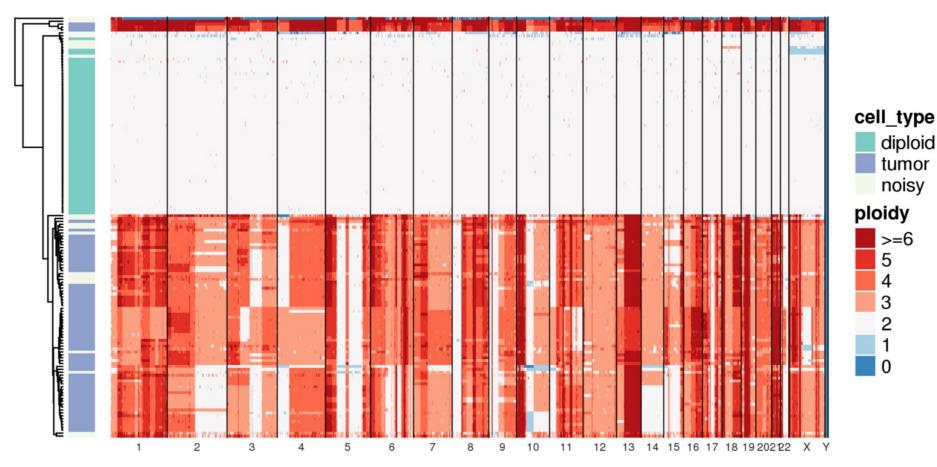
C Chromatin (P0 cerebral cortex) Chromatin (P0 cerebral cort

Chen et al. bioRxiv (2019) doi:10.1101/692608

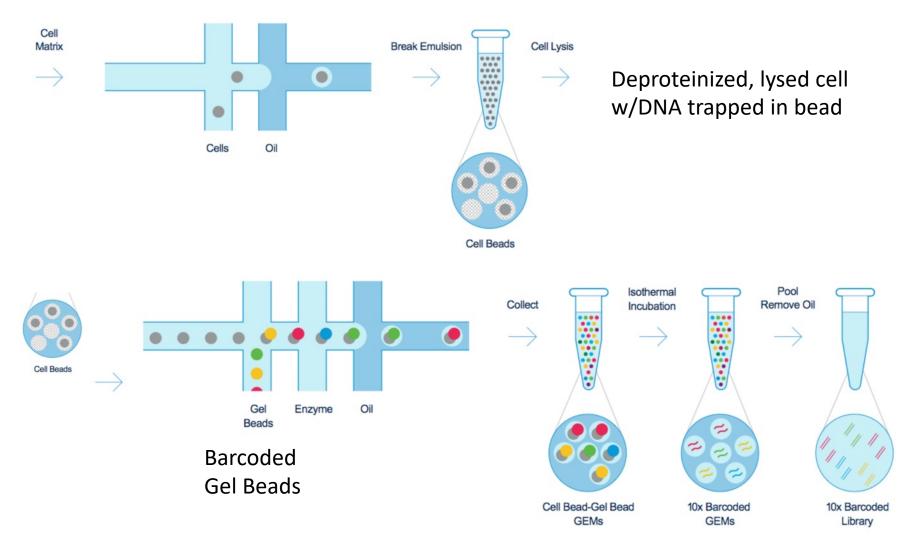


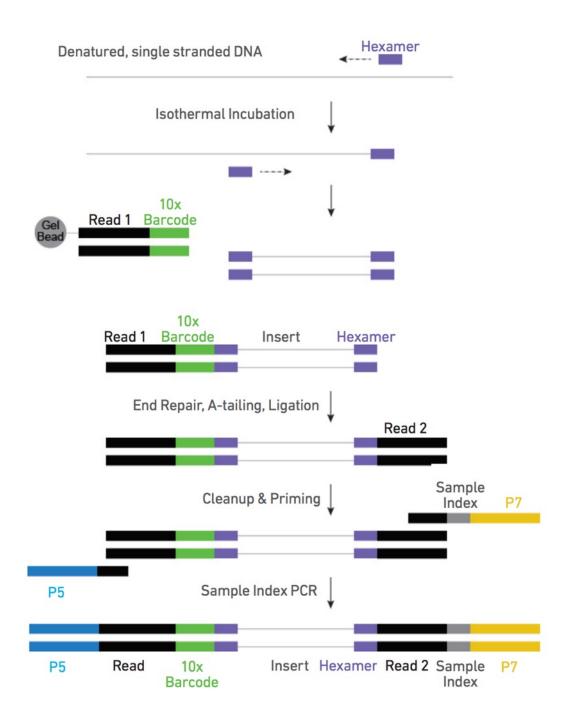
Navin et al. *Nature* (2011) Apr 7; 472(7341): 90–94.

Droplet-based Single Cell CNV



Droplet-based Single Cell CNV





Mission Bio Tapestri

DNA-focused microfluidic platform

For SNV & CNV

STEP 1. CELL ENCAPSULATION AND PROTEASE DIGESTION C Oil Cell Sample 000000000 Cell and Protease Incubation, Cell Lysate C Protease then Heat Inactivation STEP 2. CELL BARCODING AND TARGET AMPLIFICATION Barcoding Beads and Reagent Mix ⋒ \mathbf{O} • 1 Cell Lysate, Barcoding Beads, Thermalcycling,

and Reagent Mix

then Library Prep

Cell Lysate

Oil

Mission Bio Tapestri

	59 GENE				
ABL1	CSF1R	FGFR1	IDH2	MLH1	RB1
AKT1	CTNNB1	FGFR2	JAK1	MPL	RET
ALK	DDR2	FGFR3	JAK2	MTOR	SMAD4
APC	EGFR	FLT3	JAK3	NOTCH1	SMARCB1
AR	ERBB2	GNA11	KDR	NRAS	SMO
ATM	ERBB3	GNAQ	KIT	PDGFRA	SRC
BRAF	ERBB4	GNAS	KRAS	PIK3CA	STK11
CDH1	ESR1	HNF1A	MAP2K1	PTEN	TP53
CDK4	EZH2	HRAS	MAP2K2	PTPN11	VHL
CDKN2A	FBXW7	IDH1	MET	RAF1	

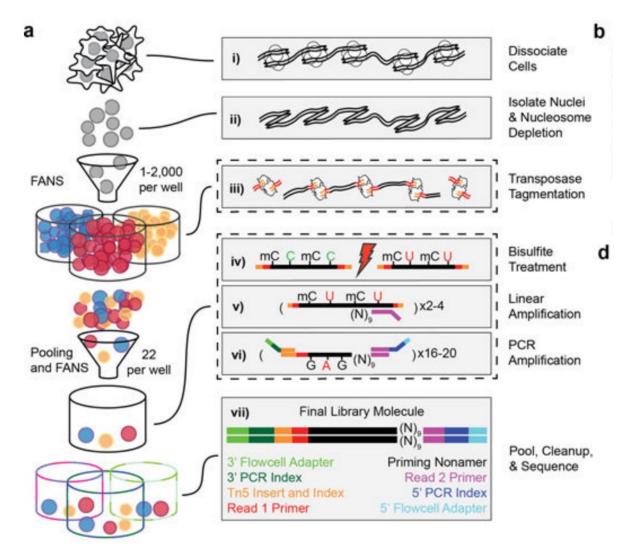
	45-GENE MYELOID PANEL							
	ASXL1	ERG	KDM6A	NRAS	SMC1A			
	ATM	ETV6	KIT	PHF6	SMC3			
	BCOR	EZH2	KMT2A	PPM1D	STAG2			
	BRAF	FLT3	KRAS	PTEN	STAT3			
	CALR	GATA2	MPL	PTPN11	TET2			
	CBL	GNAS	MYC	RAD21	TP53			
	CHEK2	IDH1	MYD88	RUNX1	U2AF1L5			
	CSF3R	IDH2	NF1	SETBP1	WT1			
	DNMT3A	JAK2	NPM1	SF3B1	ZRSR2			

FLT3 Inhibitor **On-Treatment 1 On-Treatment 2** Relapse **Pre-Treatment** 89 cells 0 cells 1,625 cells 0.8% 0% 3 cells 25.2% 0.04% Quadruple FLT3/ **RAS** Clone FLT3 / IDH2 / SF3B1 IDH2 / SF3B1 467 cells 3.4% 270 cells 3.5% 2,968 cells 1,431 cells 46.0% 12.4% Days 204 0 28 112 **Bulk NRAS VAF%** 9.5 ND --

Clonal Architecture Resolved Over Time

Other Omics

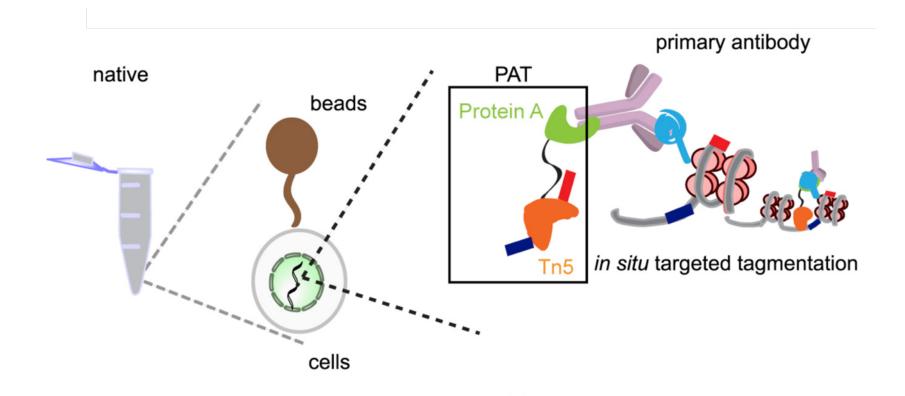
sci-MET



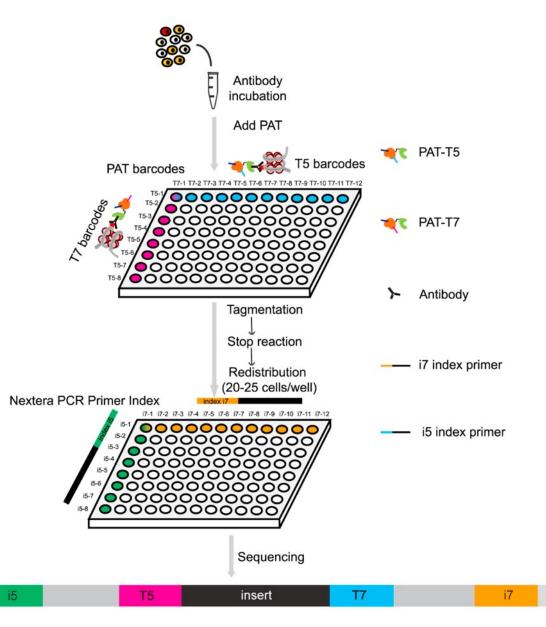
Mulqueen et al. Nat Biotechnol. 2018 Jun;36(5):428-431

Cobatch

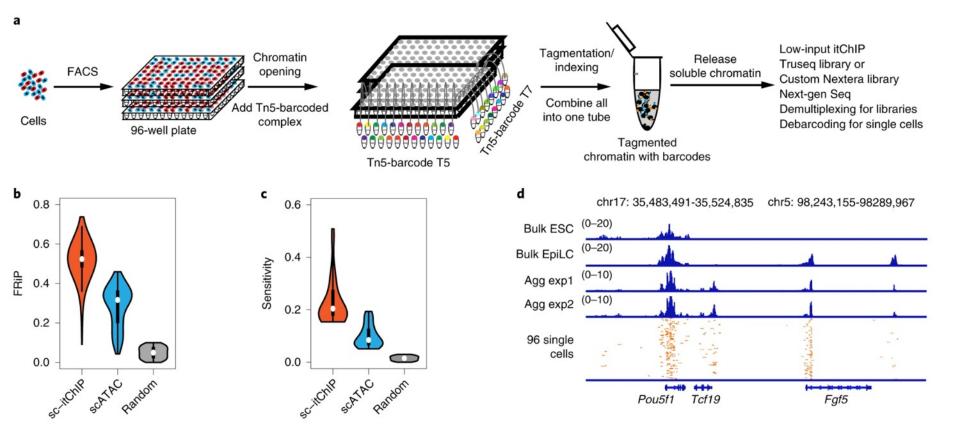
• Transcription factor binding sites in single cells



Cobatch



Single cell itChIP



Ai et al. Nat Cell Biol (2019) **21**, p1164–1172

Sequencing Costs

	RNA-seq	ATAC-seq	CNV
Reads per Cell	50-100k	50-100k	750k+
Cells per Experiment	2,000 - 10,000	2,000 - 10,000	1,000-2,000
Sequencing Platform Min.	NextSeq HO	NextSeq HO	NovaSeq S1
Cost per Experiment	~\$2,500	~\$2,800	\$12,000

