

Population sequencing and analysis projects at NYGC

Michael C. Zody
Scientific Director, Computational Biology, New York Genome Center
November 11, 2021

OVERVIEW

- Summary of large scale genome projects
- TOPMed
- CCDG
- 1000 Genome high coverage
- Methods development for large scale projects
- Absinthe insertion detector
- Structural variant phasing and imputation

TOPMED

- Trans-Omics for Precision Medicine
- NHLBI project to create resources for deeply phenotyped cohorts
- Whole genome sequencing for $>130,000$ samples of diverse ancestry
- RNA-Seq, metabolomics, proteomics
- Flagship paper in Nature this year (Taliun et al., 2021)
- Analyzed >53,000 genomes
- $>400 \mathrm{M}$ variants discovered ($\sim 50 \%$ singletons)
- Imputation panel with >97,000 genomes
- Discovery of >1000 non-reference sequences from $A C=1$ to $100 \% \mathrm{AF}$

CCDG

- Centers for Common Disease Genomics
- NHGRI project to develop paradigms for understanding genetic architecture of common disease
- Whole genome sequencing for $>130,000$ samples of diverse ancestry
- Exome sequencing for an additional 198,000 samples
- Phenotypes include ASD, epilepsy, heart disease, stroke, IBD

CCDG ANALYSIS PLANS

- Whole genome sequencing now complete
- Final ("Freeze 3") data set called
- Joint SNV/indel calling with GATK (Broad)
- Distributed SV call set (WashU, Baylor, NYGC)
- Lumpy (deletions and inversions)
- Absinthe (insertions)
- Canvas + QuicKmer2 (depth of coverage/copy number)
- Genotyping of long read derived variants with Paragraph
- SV calls will be genotyped on all samples and merged into a single set
- Imputation server based on the Michigan/TOPMed model
- Timeline for release in 2022

DATA AVAILABILITY FROM TOPMED AND CCDG

- Both projects intend to broadly share data
- Both projects consist of collections of older cohorts with a wide variety of patient consents ranging from general research to disease specific
- TOPMed data are currently available on a per cohort basis from dbGaP and BioData Catalyst
- CCDG data will be publicly available on AnVIL (access controlled through dbGaP)
- Imputation servers will be available as a service only (no downloadable panels) due to access restrictions

1000 GENOMES PROJECT SEQUENCING

- Supplement to CCDG
- 30x Illumina of all 2,504 phase 3 samples
- Additional 698 sample sequenced to complete 602 trios
- GATK joint calling for SNVs/indels
- Comprehensive combined SV calling from the HGSVC
- All data released through EBI/ISGR and NCBI:
https://www.internationalgenome.org/data-portal/data-collection/30xgrch38
- Data are also available on AnVIL (Google cloud) and AWS
- Preprint up on biorxiv (Byrska-Bishop, Evani, Zhao, et al., 2021)

1000 GENOMES OVERVIEW

$>3,202$ genomes $(2,504$ original +698 new $)$ collected from 26 populations, including:

- 602 complete trios
- 6 parent-child duos
> All samples were sequenced to a targeted depth of 30 X by the NYGC.
$>$ SNVs and INDELs were discovered using GATK's HaplotypeCaller; SVs were discovered with the GATK-SV pipeline ${ }^{[1]}$, the svtools pipeline ${ }^{[2]}$ and Absinthe ${ }^{[3]}$.
> 2,504 unrelated samples were previously sequenced to $\sim 7.4 \mathrm{X}$ (phase 3 callset) ${ }^{[4,5]}$.
[1] Collins et al. 2020. Nature
[2] Abel et al. 2020. Nature
[3] Corvelo A. in prep.
[4] The 1000 Genomes Project Consortium. 2015. Nature
[5] Sudmant et al. 2015. Nature

Samples per Population

AFR - ACB
AFR - ASW

- AFR - ESN

AFR - GWD
AFR - LWK

- AFR - MSL
- AFR - YRI

AMR - CLM
AMR - MXL
AMR - PEL
AMR - PUR
AMR - PUR
ASN - CDX

- ASN - CHB

ASN - CHS

- ASN - JPT
- ASN - KHV

EUR-CEU

- EUR - FIN
- EUR - GBR

EEUR-IBS
EUR - TSI
SAN - BEB
SAN - GIH
SAN - PJL

- SAN - STU

3

SNV/INDEL DISCOVERY

B

C

Summary stats:

	Cohort level		Per sample (mean)		
	SNV	INDEL	SNV	INDEL	
Total	$111,048,944$	$14,435,076$	$4,080,992$	871,923	
Singletons	$55,047,226$	$3,331,937$	23,197		
Novel	$14,920,932$	$4,316,916$			

Comparison against the GIAB truth set:

Variant type	FDR (\%)
SNV	0.3
INDEL	1.15

COMPARISON TO 1KG PHASE 3

> Comparison restricted to the 2,504 samples shared between the two callsets.
$>$ Used the GRCh38 lifted-over version of the phase 3 callset.


```
Callset: - phase 3 - high coverage
Regions of the genome:
\(\square\) easy
Recall rate:
- easy regions
difficult regions
```


FDR (\%):

Variant type	Phase 3	High coverage
SNV	0.60	0.10
INDEL	12.40	1.10

VARIANT FUNCTION PREDICTION

- Cohort-level total:
- 605,896 missense mutations,
- 384,451 synonymous mutations,
- 36,520 predicted loss of function variants (pLOF), defined as stop gained ($n=12,181$), frameshift ($n=10,850$), and splice mutations ($n=13,489$).
- Genome-level average (MAF < 1\%):
- 754 missense,
- 569 synonymous,
- 43 pLOFs (11 stop-gained, 14 frameshift, and 18 splice mutations).

COMPARISON TO 1KG PHASE 3

Functional consequence

- Cohort-level:
- SNVs: 1.01-1.41-fold increase in high coverage vs. phase 3.

INDELs: 2.52- and 13.48-fold increase in high coverage vs. phase 3.

- Genome-level:
- SNVs: most categories show no significant difference, except for stop-gained (9% increase), stop-lost (11% increase), and start-lost (3\% decrease).
- INDELs: most categories show $\sim 9-55 \%$ increase on average in the high coverage vs. phase 3, except for stop-gained and frameshift (3 and 7\% decrease on average, respectively).

HAPLOTYPE PHASING OF SNV/INDEL

> Filtering criteria: VQSR PASS, missingness $<5 \%$, HWE PASS, ME <=5\%, MAC>=2.
> Phasing performed using statistical phasing with pedigree-based correction (SHAPEIT2-duohmm) across autosomes (chrX was phased using Eagle2).

IMPUTATION PERFORMANCE

> Imputed a set of 279 diverse samples from the Simons Genome Diversity Project (SGDP) using IMPUTE2 software.
$>$ Evaluated the accuracy of imputed genotypes by computing the squared correlation (r^{2}) between imputed allele dosages and dosages from WGS data across 110 samples, 22 from each of the five super-populations.

Performance of the high coverage panel stratified by variant type and genomic region:

Howie, B.N. et al. PLoS Genet. 5, e1000529 (2009).

INTEGRATED STRUCTURAL VARIANT CALLS

SV callset integrated from GATK-SV, SVTools and Absinthe:
$>$ A total of 173,366 SV sites across 3,202 samples in the high coverage callset.
$>$ An average of 9,679 SVs per genome.
> More SVs are observed in African population.

INCREASED SV YIELD COMPARED TO PHASE 3

Increased sensitivity is observed in the SV callset from high-coverage ($\sim 35 \mathrm{X}$) sequences than the 1KGP phase 3 callset ($\sim 7.4 \mathrm{X}$):
$>$ Over two times more SV sites are detected from the high-coverage sequences than 1 kGP phase $3(169,713 \mathrm{vs} .68,697)$.
> Increased sensitivity is also reflected in the SV count per sample.
> Most significant increase in sensitivity is reflected in small SVs < 250bp.
> More genes are altered by SVs in the new callset than 1 kGP phase 3.
> More genes are altered in AFR population than others.

CONCLUSIONS

- We called $\boldsymbol{> 1 1 1}$ million SNVs $\boldsymbol{\&}>14$ million INDELs across the 3,202 samples with FDR of 0.3% and 1\%, respectively.
- Relative to the phase 3 callset, we called 6% more SNVs and 48% more INDELs per genome.
- The vast majority of the new SNVs are in the rare MAF spectrum ($\mathrm{AC} \leq 2$).
- We observed gains in INDEL counts across the entire MAF spectrum, with gains in the rare end of the spectrum being the most pronounced.
- The phased high coverage SNV/INDEL panel exhibits an order of magnitude higher phasing accuracy as compared to the phase 3 dataset across the entire MAF spectrum.
- Improvements in small variant calling, coupled with higher phasing accuracy of the high coverage panel, translated into significantly better imputation accuracy, especially for INDELs, across all of the 1 kGP super-populations.
- We called $\mathbf{1 7 3 , 3 6 6}$ SV sites across 3,202 samples with FDR $\leq 3.2 \%$
- More genes are altered by SVs in the high coverage call set as compared to phase 3

ABSINTHE INSERTION CALLING

- Calling "insertions" from short reads has traditionally been difficult
- Absinthe identifies reads that don't map or mismap and assembles them
- The resulting contigs can then be placed back on the reference

EXAMPLES OF ASSEMBLED INSERTIONS

CRAM

Extraction

FASTQ

Assembly

FASTA

Placement

BEDPE

Genotyping

ABSINTHE PIPELINE

- Not properly mapped read-pairs
- phix removal, adapter clipping, low quality base trimming
- de novo
- ABySS v2.0.2
- $k=77$
- ab initio:
- Flank maximal best hit pairs to GRCh38
- Alignment with gap excision
- LiftOver:
- Hominid alignment and reference-based scaffolding
- Coordinate transposition to GRCh38
- Alignment with gap excision
- Merging
- Paragraph v2.4b

VCF

RESULTS FROM TOPMED

- 53,831 genomes (reads aligned to GRCh38)
- Genotype using Paragraph, rather than simply determining presence/absence (insertions only)

		53k GRCh38
Insertions	N	713
	(bp)	514,642
Breakends	(N)	304
	(bp)	186,343

RESULTS FROM TOPMED

ALLELE AND GENOTYPE FREQUENCY

ALT ALLELE DISTRIBUTION BY ANCESTRY

ALT FREQUENCY WITH POPULATIONS

Samples
Higher fraction of $>99 \%$ alleles in Asians and Samoans
Excess ALT alleles observed in individuals of African ancestry fall in the frequency range of 10-90\%

VALIDATION WITH LONG READS

ALT allele frequency by overlap with deCODE, APG and PacBio* 79\% overlap PacBio insertions

CALLING IN 1000 GENOMES

- 1,300-1,500 insertions per individual (1.6-2.2 Mbp)
- Larger number of insertions in individuals from African populations

INSERTION LENGTH DISTRIBUTION

- Consistent across individuals

- Absinthe calls are a good complement to Manta's as they extend well into the range of $1 \mathrm{~Kb}-10 \mathrm{Kbp}$
- Several fully resolved insertions are longer than 10 Kbp

1000 GENOMES MERGED CALLSET

Merging:

- MSA-based
- Input:
- 3,583,674 per-sample calls
- Self-genotyped ($1,0 / 1,1 / 1$)
- 657,757 distinct
- 12,222 loci
- Output:
- 12,704 insertions

Genotyping:

- Paragraph (Chen et al, 2019)

Filters:

- Super population PASS-filter rate [all >=0.8]
- Super population HWE [any > 10-6]
- Mendelian Consistency based on 602 trios [$>=0.95$]
- Output:
${ }_{29}$ 7,183 HQ genotyped insertions

COMPARISON TO GATK-SV CALLS

STRUCTURAL VARIANT IMPUTATION

- Imputation panels for SNVs and small indels have greatly improved our power to run associations for traits
- SVs are harder to call from sparse data than SNVs
- SVs have typically not been included on imputation panels
- Association of SVs to phenotype has typically been done case-by-case leveraging associations discovered from linked SNVs
- We would like to be able to directly associated SVs with phenotype

PHASING ACCURACY OF SVS

[^0]
EVALUATION OF IMPUTATION PERFORMANCE

SV GT concordance evaluation against the GIAB truth set*:

Imputed sample	Info score threshold	Sensitivity	Precision
HG002	$>=0.5$	98.12%	95.55%

[^1]
STRUCTURAL VARIATION IN ALZHEIMER'S

- Create a harmonized, publicly available SV call set from a 972 familial and 39,000 unrelated LOAD case-control ADSP dataset of multi-ethnic ancestry.
- Augment ADSP SV call-set in by using SVs derived from long-read sequencing data from 200 AD patients.
- Increase sample size by imputing SVs in individuals without WGS data from the AD Genetics Consortium (ADGC).
- Identify common and rare SVs associated with LOAD and related endophenotypes.

ACKNOWLEDGEMENTS

NYGC:
Marta Byrska-Bishop
André Corvelo
Uday Evani
Anna Basile
Wayne Clarke
Rajeeva Musunuri
Giuseppe Narzisi
Kshithija Nagulapalli
Alexi Runnels
Lara Winterkorn
Soren Germer

HGSVC:
Michael Talkowski
Xuefang Zhao
Harrison Brand
Ira Hall
Haley Abel
Allison Regier
Evan Eichler
Peter Audano
Susan Fairley
Ernesto Lowy-Gallego
Paul Flicek

AD SV Grant:
Badri Vardarajan
TOPMed Consortium:
Daniel Taliun
Gonçalo Abecasis

Funding: NHGRI, NIA

[^0]: * HGSVC, pre-publication.

[^1]: * Zook JM et al. Sci data, 3:160025 (2016)

