Introduction to Genome Arithmetic

Aaron Quinlan, Joshua Mincer, Jason Kunisaki CSHL Advanced Sequencing Technologies 2022 11/16/2022 A reference genome is a coordinate system

Genome coordinates are essential

- Identifying exact variant position
- Determining functional consequence of a variant
 - Variant in a functional domain?
 - Tumor vs normal comparisons
 - Rare in the population?
- Designing a targeted sequencing panel

Learning Objectives

- What are **genome coordinates** and how are they used?
- How to incorporate intervals to analyze specific regions of the genome
- Concepts in genome arithmetic bedtools
- High level strategy to generate a targeted sequencing panel
- Figures adapted from Obi Griffith's <u>biostars tutorial</u> and Aaron Quinlan's <u>bedtools tutorial</u>

Genome coordinates identify a specific location of interest in the reference genome

World coordinates:

- 41.8781°N, 87,6298°W
- Chicago

1-based system numbers nucleotides in a sequence

Genome coordinates (1-based):

- Chromosome: chr10
- Start: 3
- End: 3
- chr10:3-3

0-based system numbers between nucleotides

Genome coordinates (1-based):

- Chromosome: chr10
- Start: 3
- End: 3
- chr10:3-3

Genome coordinates (0-based):

- Chromosome: chr10
- Start: 2
- End: 3
- chr10:2-3

Practice exercises in 0 and 1 base coordinates

Exercise 1: specify genome coordinates for the T allele in red

- 1-based position = ?
- 0-based position = ?

Exercise 2: specify genome coordinates for the ATCG sequence in blue

- 1-based position = ?
- 0-based position = ?

Add example R and python code to go through this

DNA Sequence =	A	A	Т	G	С	Α		G	С	Т	1	Ą	G	С	Т	А	С	;	G	
1-based position:			2	 3	4	 5		6	 7	8		9	 10	 11	 12	 13	 1·	4	 15	
0-based position:	0	1	2		3	4	5	6		7	8	9	10	0 -	11	12	13	14	1	5

5 minute exercise: using R (google "substr") and python, answer the following questions where DNA_seq = ATGCAGCTAGCTAGC:

- Identify the 5th nucleotide in the sequence
- Identify the sequence of the 8-14th nucleotides

R's 1-index system is similar to 1-based coordinates

Python's 0-index system is analogous to 0-base coordinates

Defining 1-based variant coordinates TAGC TGCTGATGTGCAGATG **Reference chr10** С С А Α Т G А -- A Т С G Tumor chr10 3 4 5 8 1 2 6 7 9 11 12 13 10 14 1-based position: 7 1 4 10 11 12 13 14

Variant	Genomic Coordinate	Ref>Alt	Variant Coordinate	0 or 1-based
Single nucleotide variant				1 based
Deletion (C deleted)				1 based
Insertion (TAGC inserted)				1 based

Defining 0-based variant coordinates TAGC ATGCTGATGCATATGCAGATG--AT **Reference chr10** С G С G Tumor chr10 I</t 14 1-based position: 2 3 4 5 6 7 8 10 0-based position: 0 1 9 11 12 13 14

Variant	Genomic Coordinate	Ref>Alt	Variant Coordinate	0 or 1-based
Single nucleotide variant				0 based
Deletion (C deleted)				0 based
Insertion (TAGC inserted)				0 based

Why does 0-based or 1-based matter?

- Widely used genomic file formats use different coordinate systems
- Consistent reference to nucleotides is critical for reproducible research
- Aaron will go through different file formats in the next session

0-based	1-based
BAM (alignments)	SAM (alignments)
BED (<u>start</u> position only)	BED (end position only)
IGV (<u>the file type</u> - *.igv)	IGV (the viewer)
	VCF (variants)
	GFF (genomic features)
	UCSC Genome Browser

Let's use IGV to visualize the "fun" of 0 and 1-based coordinates

- We will look at exons in FGFR3 with the UCSC Genome Browser
 - Genome browser > tools > table browser > specify track > download
 - <u>https://training.incf.org/lesson/how-do-i-get-coordinates-and-sequences-exons-using-ucsc-genome-browser</u>
- Step 1: Download genomic coordinates for exons (BED file)
 - Make a new folder on your Desktop called bedtools
 - mkdir ~/Desktop/bedtools
- Step 2: Open IGV and look at FGFR3
- Step 3: Copy and paste coordinates directly from BED file into IGV
- Step 4: Load BED file into IGV

Case study of genome arithmetic: designing a custom sequencing panel

- Overall goal: identify informative genomic intervals in coding regions for sequencing and subsequent mutation analysis
- Things to account for:
 - Tissue-specific isoforms
 - Isoform-specific:
 - Exons
 - Functional domains
 - Sites of known mutation hotspots
- Verify intervals included in sequencing panel using IGV

Designing sequencing panel is the first step for targeted sequencing

"Verbs" in Genome Arithmetic

Merge: <u>combine</u> overlapping intervals Capture all coding exons across all isoforms

Merge: <u>combine</u> overlapping intervals Capture all coding regions across isoforms #1 and #2

How would we do this in R/python??

- Copy and paste the R code from slack into Rstudio
- What if we could do this in one single line with three words:
- `bedtools merge [file]`

Intersection: *identify* and isolate overlapping features

Identify exons harboring informative variants (1+ variant must be in the exon) \rightarrow then merge across all isoforms

Isoform #1:

Intersection: *identify* and isolate overlapping features

Identify any exons in individual isoforms without informative variants (no variant can be in the exon at any position)

Isoform #1:

Intersection: identify portions of exons from any isoform without informative variants and overlaps with a functional domain (functional domain cannot harbor informative variant)

Complement: identify intervals <u>not</u> covered by genomic features

Get non-functional domain regions across all isoforms (if any isoform has a FD, exclude)

Isoform #1:

