

RNA-Seq Module 2 SAM/BAM/BED file formats

Kelsy Cotto, Felicia Gomez, Obi Griffith, Malachi Griffith, My Hoang, Chris Miller, Huiming Xia Advanced Sequencing Technologies & Bioinformatics Analysis November 6-20, 2022

Washington University in St. Louis

rnabio.org

School of Medicine

What is a sequence read? (a.k.a. "a read")

Reads are the sequencer's best guess at what it saw for a given DNA molecule. *It's the "raw" data.*

Alignment is central to most genomics applications

Alignment is central to most genomics applications

5

The FASTQ format

A "standard" format for storing and defining sequences from next-generation sequencing technologies.

- FASTQ files are generally used to store short-read data from high-throughput sequencing experiments.
- The sequence and quality scores are usually put into a single line

Sequence IDs

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name		
6	flowcell lane		
73	tile number within the flowcell lane		
941	'x'-coordinate of the cluster within the tile		
1973	'y'-coordinate of the cluster within the tile		
#0	index number for a multiplexed sample (0 for no indexing)		
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)		

EAS139 the unique instrument name 136 the run id FC706VJ the flowcell id flowcell lane 2 tile number within the flowcell lane 2104 15343 'x'-coordinate of the cluster within the tile 197393 'y'-coordinate of the cluster within the tile 1 the member of a pair, 1 or 2 (paired-end or mate-pair reads only) Υ Y if the read is filtered, N otherwise 0 when none of the control bits are on, otherwise it is an even number 18 ATCACG index sequence

rnabio.org

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

Quality scores

Qualities are based on the Phred scale and are *encoded*

 $Q = -10^{*}log_{10}(P_{err})$

- FASTQ files encodes phred scores as ASCII characters
- Phred quality scores characterize the quality of DNA sequences – these scores are assigned by the sequencer

Q=-10Log ₁₀ (P _{error})						
Probability	of Error	Q				
1/1,000,000	0.000001	60				
1/100,000	0.000010	50				
1/10,000	0.000100	40				
1/1,000	0.001000	30				
1/100	0.010000	20				
1/10	0.100000	10				
1/1	1.000000	0				

Quality score encoding

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	1.	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	в	98	62	b
3	03	End of text	35	23	#	67	43	с	99	63	c
4	04	End of transmit	36	24	\$	68	44	D	100	64	d
5	05	Enquiry	37	25	÷	69	45	Е	101	65	e
6	06	Acknowledge	38	26	æ	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2 A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2 B	+	75	4B	к	107	6B	k
12	0C	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E	•	78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	o
16	10	Data link escape	48	30	o	80	50	Р	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans. block	55	37	7	87	57	ឃ	119	77	w
24	18	Cancel	56	38	8	88	58	х	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	ЗB	;	91	5B	[123	7B	{
28	10	File separator	60	3C	<	92	5C	١	124	7C	1 I
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	ЗE	>	94	5E	^	126	7E	~
31	1 ਸ	Linit congretor	63	3 8	2	05	5 8		127	78	

Formula for getting PHRED quality from encoded quality:

Q = ascii(char) - 33

- ASCII = <u>A</u>merican
 <u>S</u>tandard <u>C</u>ode for
 <u>I</u>nformation
 <u>I</u>nterchange
- Every text symbol
 must have an
 integer value
 representing it
 inside the computer
- An ASCII code is the numerical representation of a character such as 'a' or '@'

Thursday, November 21, 13

FASTA format

We start with a reference genome to map to

The reference sequence Sequence description (chromosome) >20 dna:chromosome chromosome:GRCh37:20:1:63025520:1 NNNNNNNNNTACTTCGATTGCGTATTTACGGACGTAGCGAGTCTTTAGAGTCTTTTAGTCTGTATC DNA sequence http://en.wikipedia.org/wiki/FASTA format

The goal. Easy, right?

FASTQ

Sequence alignment is the crucial first step.

Module 2 Slide courtesy of Aaron Qunilan

Aligning to a reference genome

This is like a jigsaw puzzle

Could fit here - but there are differences

Could fit here as well.

Single-end alignment

Paired-end alignment

Paired-end alignment

Paired End sequencing

Paired-end alignment

• _____

Paired End sequencing

rnabio.org

Thursday, November 21, 13

Both mates map uniquely

One mate maps uniquely, the other is unmapped

Module 2 Slide courtesy of Andrew Farrell

What needs to be stored?

Where did the read map? How confident are we that we are correct? Which strand does the read come from? Are there any differences with the reference? What is the DNA sequence? What are the quality scores for each base in the read? What do we know about the mate? Which read group does the read belong to?

http://samtools.github.io/htsspecs/SAMv1.pdf

What needs to be stored?

Where did the read map? How confident are we that we are correct? Which strand does the read come from?

Are there any differences with the reference? What is the DNA sequence? What are the quality scores for each base in the read? What do we know about the mate? Which read group does the read belong to?

> http://samtools.github.io/htsspecs/SAMv1.pdf

What needs to be stored?

Where did the read map? How confident are we that we are correct? Which strand does the read come from? Are there any differences with the reference? What is the DNA sequence? What are the quality scores for each base in the read? What do we know about the mate? Which read group does the read belong to?

> http://samtools.github.io/htsspecs/SAMv1.pdf

Store the alignment

1000 Genomes **Mapping Human Genetic Variation**

Standardize alignment formats

SAM - Sequence Alignment/Map

- Compressed (BAM) saves space
- Can be indexed allowing fast access of regions
- Simple format
- Can represent single and paired end reads
- Many toolkits now available to process data

http://samtools.github.io/htsspecs/SAMv1.pdf

Introduction to the SAM/BAM format

- The specification
 - <u>http://samtools.sourceforge.net/SAM1.pdf</u>
- SAM is uncompressed text data
- BAM is a compressed version of SAM
 - lossless BGZF format
- BAM files are usually 'indexed'
 - A '.bai' file will be found beside the '.bam' file
 - Indexing provides fast retrieval of alignments overlapping a specified region without going through all alignments.
 - BAM must be sorted by the reference ID and then the leftmost coordinate before indexing

Example of SAM/BAM file format

Example SAM/BAM/CRAM header section (abbreviated)

mgriffit@linus270 🗠 samtools view -H /gscmnt/gc13001/info/model_data/2891632684/build136494552/alignments/136080019.bam | grep -P "SN\:22|HD|RG|PG"

@HD VN:1.4 S0:coordinate

@SQ SN:22 LN:51304566 UR:ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa.gz AS:GRCh37-lite M5:a718acaa6135fdca8357d5bfe9 4211dd SP:Homo sapiens

@RG ID:2888721359 PL:illumina PU:D1BA4ACXX.3 LB:H_KA-452198-0817007-cDNA-3-lib1 PI:365 DS:paired end DT:2012-10-03T19:00:00-0500 SM:H_KA-452198-0817007 CN:WUGSC

@PG ID:2888721359 VN:2.0.8 CL:tophat --library-type fr-secondstrand --bowtie-version=2.1.0

@PG ID:MarkDuplicates PN:MarkDuplicates PP:2888721359 VN:1.85(exported) CL:net.sf.picard.sam.MarkDuplicates INPUT=[/gscmnt/gc13001/info/build_merged_alignments/merged_al

Example SAM/BAM/CRAM alignment section (only 10 alignments shown)

mgriffit@linus270 ->> samtools view -f 3 -F 1804 /gscmnt/gc13001/info/model_data/2891632684/build136494	552/alignments/136080019.bam head
HWI-ST495_129147882:3:2114:15769:38646 99 1 11306 3 100M = 11508 302	ACTGCGGGGGCCCTCTTGCTTACTGTATAGTGGTGGCACGCCGCCTGCTGGCAGCAGCACGCCAGGGACATTGCAGGGTCCTCTTGCTCAAGGTGTAGTGGCAGCACGC
CCFFFFHHHGHJJJJJJJJJJJJJJJJJJJIJJJHIJJJJJJJHFDDDDDDDDDD	CC:Z:15 MD:Z:5A94 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
1 XN:i:0 X0:i:0 CP:i:102519765 AS:i:-5 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:2114:15769:38646 147 1 11508 3 100M = 11306 -302	ACTCCTAAATATGGGATTCCTGGGTTTAAAAGTATAAAATAAAT
;5:CDCDCDECEFCD@9E=?7EEIIIIHCEGGIJJJJIIJJIHF@?00IHHFFGG?*JJJIJGHGEIJJIJJJJJJIHHCIEJJJHFHHGHFFEDFCCB	CC:Z:15 MD:Z:34A65 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
1 XN:i:0 X0:i:0 CP:i:102519563 AS:i:-6 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:1210:1257:16203 163 1 11810 3 100M = 12055 345	CCTGCATGTAGTTTAAACGAGATTGCCAGCACCGGGTATCATTCACCATTTTTCTTTTCGTTAACTTGCCGTCAGCCTTTTCTTTGACCTCTTTCTT
CCFFFFHFHAFGGIIIJJJEEHGIGGGIJIJJGI?@EHIGIJDGHIHIGGIJJJJJJJJJJGHHHGHFFFCDDDDDDCDCCCCCA;>@>@AA@:AA>AA	CC:Z:15 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 X0:i:0 CP:i:102519261 AS:i:0 XS:A:- YT:Z:UU	
HWI-ST495_129147882:3:1210:1257:16203 83 1 12055 3 100M = 11810 -345	GAGCACTGGAGTGGAGTTTTCCTGTGGAGAGGAGCCATGCCTAGAGTGGGATGGGCCATTGTTCATCTTCTGGCCCCTGTTGTCTGCATGTAACTTAATAC
CC>4C>DCCCACACDCC?BDCEE@ECFFFHHHHHIJJJIIJJIIHHEHIIGJIJIJJIGHIIIJJJJJIIJJJJJIJJJJHGHHHDFEFFCCC	CC:Z:15 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 X0:i:0 CP:i:102519016 AS:i:0 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:2111:3117:78828 163 1 12634 3 100M = 12746 212	GCCCTTCCCCAGCATCAGGTCTCCAGAGCTGCAGAAGACGACGGCCGACTTGGATCACACTCTTGTGAGTGTCCCCAGTGTTGCACAGGGGAGAGAGGAGAGAG
@@FFFFDHHHH9FHGIIFGAFDHEGII>GHIIIIIIIIIIIIIIIIFHDDFFEEECEECCCACCCCCC:AADCCBCC>CAC <cccccc:@cb@@bab##< td=""><td>CC:Z:15 MD:Z:85G14 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:</td></cccccc:@cb@@bab##<>	CC:Z:15 MD:Z:85G14 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
1 XN:i:0 X0:i:0 CP:i:102518437 AS:i:-5 XS:A:- YT:Z:UU	
HWI-ST495_129147882:3:2111:3117:78828 83 1 12746 3 100M = 12634 -212	GGGAGTGGCGTCGCCCCTAGGGCTCTACGGGGCCCGCATCTCCTGTCTCCTGGAGAGGCTTCGATGCCCCTCCACACCCTCTTGATCTTCCCTGTGATGTD
DCABDBDDDDDDDDDDDDDDDDDDBDB@;CCCCCDEFD@;.? <higgeigehigjjjiigigiihegfehfjiiiiigjjjjhhhhhffffc@@< td=""><td>CC:Z:15 MD:Z:37G62 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:</td></higgeigehigjjjiigigiihegfehfjiiiiigjjjjhhhhhffffc@@<>	CC:Z:15 MD:Z:37G62 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i:
1 XN:i:0 X0:i:0 CP:i:102518325 AS:i:-5 XS:A:- YT:Z:UU	
HWI-ST495_129147882:3:1102:4242:26638 99 1 13503 3 100M = 13779 376	CGCTGTGCCCTTCCTTTGCTCTGCCCGCTGGAGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGGAC
CCFFFFHHHHHJJJJJJJJJJJJJJJJJJJJJJGIIIIJJFHGGIJGIJJJEGIJIJJHHIHHGHFFEFDEEEECCCAACDDACDCDDDDB?8? A@CDC	CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 X0:i:0 CP:i:114357414 AS:i:0 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:1309:15328:74082 99 1 13534 3 100M = 13780 346	AGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAGTCCAGAGTGTTGCCAGGACCCAGGACACAGG
CCFFFADHHHHFIJJJJJJIJIHIJJJIHJJIJJIJJIJJJJJJJBFHIIJJJJJJJJIHH=EEFFFCEEECEDCDCDDDDDDDDDDDDDDDDDDDDDDDD	CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 X0:i:0 CP:i:114357383 AS:i:0 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:1308:10126:19636 99 1 13779 3 100M = 14027 348	CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCGGAGCCCATCTGCTACTGCCCCTTTCTATAATAACTAAAGTTAGCTGC
CCFFFFHHGHHJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:i:0 X0:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU	
HWI-ST495_129147882:3:1102:4242:26638 147 1 13779 3 100M = 13503 -376	CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGACCGAGCCCATCTGCCACTGCCCTTTCTATAATAACTAAAGTTAGCTG#
##DCCDDDCCBBBABCCDDDCBDDBBDHC?=GIIJIIIJJGIIIIJJHJJIJJIGCIIJJJJJJGGJJIJIJJJJJIIIIGGFGHHHHFFFFCCC	CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i:
0 XN:1:0 X0:1:0 CP:1:114357140 AS:1:0 XS:A:+ YT:Z:UU	
mgriffit@linus270 🛷 📕	

SAM/BAM header section

- Used to describe source of data, reference sequence, method of alignment, etc.
- Each section begins with character '@' followed by a two-letter record type code. These are followed by two-letter tags and values:
 - @HD The header line
 - VN: format version
 - SO: Sorting order of alignments
 - @SQ Reference sequence dictionary
 - SN: reference sequence name
 - LN: reference sequence length
 - SP: species

- @RG Read group
 - ID: read group identifier
 - CN: name of sequencing center
 - SM: sample name
- @PG Program
 - PN: program name
 - VN: program version

A BAM file is divided in header and alignment sections Example SAM/BAM header section (abbreviated)

mgriffit@linus270 -> samtools view -H /gscmnt/gc13001/info/model_data/2891632684/build136494552/alignments/136080019.bam | grep -P "SN\:22|HD|RG|PG"

@HD VN:1.4 S0:coordinate

@SQ SN:22 LN:51304566 UR:ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa.gz AS:GRCh37-lite M5:a718acaa6135fdca8357d5bfe9 4211dd SP:Homo sapiens

@RG ID:2888721359 PL:illumina PU:D1BA4ACXX.3 LB:H_KA-452198-0817007-cDNA-3-lib1 PI:365 DS:paired end DT:2012-10-03T19:00:00-0500 SM:H_KA-452198-0817007 CN:WUGSC
@PG ID:2888721359 VN:2.0.8 CL:tophat --library-type fr-secondstrand --bowtie-version=2.1.0

@PG ID:MarkDuplicates PN:MarkDuplicates PP:2888721359 VN:1.85(exported) CL:net.sf.picard.sam.MarkDuplicates INPUT=[/gscmnt/gc13001/info/build_merged_alignments/merged_alignments/merged_alignments/merged_alignments/merged_alignments/merged_alignments/merged_alignments/merged_alignments/merged_alignment-blade10-2-5.gsc.wustl.edu-jw alker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-288360300-post_dup.bam METRICS_FILE=/gscmnt/gc13001/info/build_merged_alignments/merged_alignment-blade10-2-5.gsc.wustl.edu-jwalker-1543 4-136080019/staging_1iuJS/H_KA-452198-0817007-cDNA-3-lib1-2888360300.metrics REMOVE_DUPLICATES=false ASSUME_SORTED=true MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=9500 TMP_DIR=[/gscmnt/gc13001/info/build_merged_al ignments/merged_alignment-blade10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y] VALIDATION_STRINGENCY=SILENT MAX_RECORDS_IN_RAM=500000 PROGRAM_RECORD_ID=MarkDuplicates PROGRAM_GROUP_NAME=Mark Duplicates MAX_SEQUENCES_FOR_DISK_READ_ENDS_MAP=50000 SORTING_COLLECTION_SIZE_RATIO=0.25 READ_NAME_REGEX=[a-zA-Z0-9]+:[0-9]:([0-9]+):([0-9]+):([0-9]+):([0-9]+).* OPTICAL_DUPLICATE_PIXEL_DISTANCE=100 VERBOSITY=INFO QUIET=false COMPRESSION_LEVEL=5 CREATE_INDEX=false CREATE_MD5_FILE=false mgriffit@linus270 ~>

29

A BAM file is divided in header and alignment sections Example SAM/BAM alignment section (only 10 alignments shown)

mgriffit@linus270 -> samtools view -f 3 -F 1804 /gscmnt/gc13001/info/model_data/2891632684/build136494552/alignments/136080019.bam | head HWI-ST495 129147882:3:2114:15769:38646 99 11306 3 100M = 11508 302 1 CC:Z:15 MD:Z:5A94 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i: XN:i:0 X0:i:0 CP:i:102519765 AS:i:-5 XS:A:+ YT:Z:UU HWI-ST495_129147882:3:2114:15769:38646 147 11508 3 100M 11306 -302 1 = ;5:CDCDCDECEFCD@9E=?7EEIIIIHCEGGIJJJJIIJJIHF@?00IHHFFGG?*JJJIJGHGEIJJIJJJJJJJIHHCIEJJJHFHHGHFFEDFCCB CC:Z:15 MD:Z:34A65 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i: 1 XN:i:0 X0:i:0 CP:i:102519563 AS:i:-6 XS:A:+ YT:Z:UU 100M HWI-ST495 129147882:3:1210:1257:16203 163 11810 3 12055 345 CCTGCATGTAGTTTAAACGAGATTGCCAGCACCGGGTATCATTCACCATTTTTCTTTTCGTTAACTTGCCGTCAGCCTTTTCTTTGACCTCTTCTTCGC 1 = CCFFFFHFHAFGGIIIJJJEEHGIGGGIJIJJGI?@EHIGIJDGHIHIGGIJJJJJJJJJGHHHGHFFCDDDDDDCDCCCCCA;>@>@AA@:AA>AA PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i: CC:Z:15 MD:Z:100 0 XN:i:0 X0:i:0 CP:i:102519261 AS:i:0 XS:A:- YT:Z:UU HWI-ST495 129147882:3:1210:1257:16203 83 12055 3 100M GAGCACTGGAGTGGAGTGGAGTGGGAGAGGAGGAGGCATGCCTAGAGTGGGATGGGCCATTGTTCATCTTCTGGCCCCCTGTTGTCTGCATGTAACTTAATAC 1 = 11810 -345 CC:Z:15 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i: XN:i:0 X0:i:0 CP:i:102519016 AS:i:0 XS:A:+ YT:Z:UU HWI-ST495 129147882:3:2111:3117:78828 12634 3 100M 12746 212 163 1 = @@FFFFFDHHHH9FHGIIFGAFDHEGII>GHIIIIIIIIIIIIIIIIFHDDFFEEECEECCCACCCCC:AADCCBCC>CAC<CCCCC:@CB@@BAB## CC:Z:15 MD:Z:85G14 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i: XN:i:0 X0:i:0 CP:i:102518437 AS:i:-5 XS:A:- YT:Z:UU HWI-ST495 129147882:3:2111:3117:78828 83 12746 3 100M 12634 -212 GGGAGTGGCGTCGCCCCTAGGGCTCTACGGGGCCGGCATCTCCTGTCTCCTGGAGAGGCTTCGATGCCCCTCCACACCCTCTTGATCTTCCCTGTGATGTD 1 = DCABDBDDDDDDDDDDDDDDDDDDBDB@BDDDB@; CCCCCDEFD@; .?<HIGGEIGEHIGJJJIIGIGIIHEGFEHFJIIIIIGJJJJHHHHHFFFFC@@ CC:Z:15 MD:Z:37G62 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:1 XM:i: XN:i:0 X0:i:0 CP:i:102518325 AS:i:-5 XS:A:- YT:Z:UU 1 HWI-ST495_129147882:3:1102:4242:26638 99 13503 3 100M 13779 376 CGCTGTGCCCTTCCTTTGCTCTGCCCGCTGGAGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAC 1 = CCFFFFFHHHHHJJJIJJJJJJJJJJJJJJJJJJJJIFHGGIJGIJJJEGIJIJJHHIHHGHFFEFDEEEECCCAACDDACDCDDDDB?8?A@CDC CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i: 0 XN:i:0 X0:i:0 CP:i:114357414 AS:i:0 XS:A:+ YT:Z:UU HWI-ST495 129147882:3:1309:15328:74082 99 13534 3 100M 13780 AGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAGTCCAGAGTGTTGCCAGGACCCAGGCACAGGa 346 1 = CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i: 0 XN:i:0 X0:i:0 CP:i:114357383 AS:i:0 XS:A:+ YT:Z:UU CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCAGACCCATCTGCTACTGCCCTTTCTATAATAACTAAAGTTAGCTGC HWI-ST495 129147882:3:1308:10126:19636 99 13779 3 100M 14027 348 1 = CC:Z:2 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i: XN:i:0 X0:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU 0 HWI-ST495 129147882:3:1102:4242:26638 147 13779 3 100M 13503 -376 CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCAGACCCATCTGCTACTGCCCTTTCTATAATAACTAAGTTAGCTG# 1 = CC:Z:2 MD:Z:100 ##DCCDDDCCBBBABCCDDDCBDDBBDHC?=GIIJIIIIJGIIIIJJHJJIJJIGCIIJJJJJJIGHGJJIJJJJJJIJIIIGGFGHHHHFFFFCCC PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM:i: XN:i:0 X0:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU Ø mgriffit@linus270 🗠

SAM/BAM alignment section

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	Int	$[0,2^{16}-1]$	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	$[0, 2^{29}-1]$	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next segment
8	PNEXT	Int	$[0,2^{29}-1]$	Position of the mate/next segment
9	TLEN	Int	$[-2^{29}+1,2^{29}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Example values

1	QNAME	e.g.	HWI-ST495_129147882:1:2302:10269:12362
2	FLAG	e.g.	99
3	RNAME	e.g.	1
4	POS	e.g.	11623
5	MAPQ	e.g.	3
6	CIGAR	e.g.	100M
7	RNEXT	e.g.	=
8	PNEXT	e.g.	11740
9	TLEN	e.g.	217
10	SEQ	e.g.	CCTGTTTCTCCACAAAGTGTTTACTTTTGGATTTTTGCCAGTCTAACAGGTGAAGCCCTGGAGATTCTTATTAGTGATTTGGGCTGGGGCCTGGCCATGT
11	QUAL	e.g.	CCCFFFFFHHHHHJJIJFIJJJJJJJJJJJJJJJJJJJJJ

SAM Format - Information Fields

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	\mathbf{Int}	$[0,2^{16}-1]$	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	\mathbf{Int}	[0,2 ³¹ -1]	1-based leftmost mapping POSition
5	MAPQ	\mathbf{Int}	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	\mathbf{Int}	$[0, 2^{31} - 1]$	Position of the mate/next read
9	TLEN	\mathbf{Int}	$[-2^{31}+1,2^{31}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

SAM/BAM flags explained

- 12 bitwise flags describing the alignment
- Stored as a binary string of length 12 instead of 12 columns of data
- Value of '1' indicates the flag is set. e.g. 00100000000
- All combinations can be represented as a number from 0 to 4095 (i.e. 2¹²-1). This number is used in the BAM/SAM file.
- You can specify 'required' or 'filter' flags in samtools view using the '-f' and '-F' options respectively

Bit		Description	
1	0x1	template having multiple segments in sequencing	
2	0x2	each segment properly aligned according to the aligner	
4	0x4	segment unmapped	
8	0x8	next segment in the template unmapped	
16	0x10	SEQ being reverse complemented	
32 0x20 SEQ of the next segment in the template bein		SEQ of the next segment in the template being reverse complemented	
64	0x40	the first segment in the template	
128	0x80	the last segment in the template	
256	0x100	secondary alignment	
512	0x200	0x200 not passing filters, such as platform/vendor quality controls	
1024	0x400	PCR or optical duplicate	
2048	0x800	supplementary alignment	

Note that to maximize confusion, each bit is described in the SAM specification using its hexadecimal representation (i.e., '0x10' = 16 and '0x40' = 64).

rnabio.org

http://broadinstitute.github.io/picard/explain-flags.html

SAM Format - Information Fields

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	\mathbf{Int}	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	\mathbf{Int}	$[0, 2^{31} - 1]$	1-based leftmost mapping POSition
5	MAPQ	\mathbf{Int}	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	\mathbf{Int}	$[0, 2^{31} - 1]$	Position of the mate/next read
9	TLEN	\mathbf{Int}	$[-2^{31}+1,2^{31}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

CIGAR strings explained

•The 'CIGAR' (<u>C</u>ompact <u>I</u>diosyncratic <u>G</u>apped <u>A</u>lignment <u>R</u>eport)

•The CIGAR string is a sequence of base lengths and associated 'operations' indicating which bases align to the reference (either a match or mismatch), are deleted, are inserted, represent introns,

otc	

Op	BAM	Description			
М	0	alignment match (can be a sequence match or mismatch)			
I	1	insertion to the reference			
D	2	deletion from the reference			
Ν	3	skipped region from the reference			
S	4	soft clipping (clipped sequences present in SEQ)			
Н	5	5 hard clipping (clipped sequences NOT present in SEQ)			
Р	6	6 padding (silent deletion from padded reference)			
=	7	sequence match			
Х	8	sequence mismatch			

•e.g. 81M859N19M

•A 100 bp read consists of: 81 bases of alignment to reference, 859 bases skipped (an intron), 19 bases of alignment

CRAM files

- CRAM is an ultra-compressed version of a BAM file
 - Usually between 30-60% smaller than the corresponding BAM
- Stores "diffs" from the reference genome
 - requires the matching reference genome to restore original data!
- Base quality binning may be used as well
- Some tools still require conversion back to bam

Quality Score Bins	Example of Empirically Mapped Quality Scores*
N (no call)	N (no call)
2–9	6
10–19	15
20–24	22
25–29	27
30–34	33
35–39	37
≥ 40	40

By replacing the quality scores between 19 and 25 with a new score of 22, data storage space is conserved.

*The mapped quality score of each bin (except "N") is subject to change depending on individual Q-tables.

Introduction to the BED format

- When working with BAM files, it is very common to want to examine a focused subset of the reference genome
 - e.g. the exons of a gene
- These subsets are commonly specified in 'BED' files
 - <u>https://genome.ucsc.edu/FAQ/FAQformat.html#format1</u>
- Many BAM manipulation tools accept regions of interest in BED format
- Basic BED format (tab separated):
 - Chromosome name, start position, end position (BED3)
 - Coordinates in BED format are 0 based

Introduction to the BED format

- There are several flavors of BED format: BED3, BED4, BED6, BED8, etc.
- First 3 fields always required: chr, start, stop
- Followed by up to 9 additional optional fields: name, score, strand, thickStart, thickEnd, itemRGB, blockCount, blockSizes, blockStarts

chr7	127471196	127472363	Pos1	0	+
chr7	127472363	127473530	Pos2	0	+
chr7	127473530	127474697	Pos3	0	+
chr7	127474697	127475864	Pos4	0	+
chr7	127475864	127477031	Neg1	0	-
chr7	127477031	127478198	Neg2	0	-
chr7	127478198	127479365	Neg3	0	-
chr7	127479365	127480532	Pos5	0	+
chr7	127480532	127481699	Neg4	0	-

Manipulation of SAM/BAM and BED files

- Several tools are used ubiquitously in sequence analysis to manipulate these files
- SAM/BAM files
 - samtools
 - bamtools
 - Picard
- BED files
 - bedtools
 - bedops

Common sources of confusion

- Genomic coordinate systems
- Genome builds
- Variant representation

Genomic coordinates – 1 vs 0 based

chr1		Т	A		С		G	Т		С	А	
1-based		 1	2		 3		 4	5		 6	 7	
0-based	0		1	2		3	2	1	5		6	7
							1-base	ed		0-bas	ed	

chr1:4-4 G

chr1:2-4 ACG

chr1:5-5 T/A

•	1-based : Single nucleotides, variant positions, or ranges are specified directly by their
	corresponding nucleotide numbers

- GFF, SAM, VCF, Ensembl browser, ...
- O-based: Single nucleotides, variant positions, or ranges are specified by the coordinates that flank them
 - BED, BAM, UCSC browser, ...

Indicate a single nucleotide

Indicate a range of nucleotides

Indicate a single nucleotide variant

chr1:3-4 G

chr1:4-5

chr1:1-4 ACG

T/A

Genome builds

Reference Genome builds

Current human: GRCh38, hg38, b38 alternates: GRCh38v2_ccdg, GRCh38_full_analysis_set_plus_decoy_hla

Previous human: GRCh37, hg19, b37

Current mouse: GRCm38, mm10

Lift-over

rnabio.org

For a detailed discussion of various human reference genome flavors refer here: https://pmbio.org/module-02-inputs/0002/02/01/Reference_Genome/

Variant shifting (alignment) and parsimony/trimming

Reference and alternative alleles of a CA short tandem repeat (STR)

REF

dem rep	Deat (STR) ALT GG	GCACACAG	igg 🔨 CA	deletion from the	reference
	Genome Reference	Vari	ant Call	Format	1
	GGGCACACACAGGG	POS	REF	ALT	
REF	CA	8	CA		Not left aligned
ALT					allele is empty
REF	CAC	6	CAC	С	Not left aligned
ALT	С	1			but parsimonious
REF	GCACA	3	GCACA	GCA	Not right trimmed
ALT	GCA				
REF	GGCA	2	GGCA	GG	Not left trimmed
ALT	GG	1			1
REF	GCA	3	GCA	G	Normalized
ALT	G	:			 (left aligned & parsimonious)

GGGCACACACAGGG

Alleles represented against the human genome reference. Allele pairs are colored the same, all are representations of the same variant. Alleles represented in Variant Call Format, all are representations of the same variant. **Parsimony:** representing variant in as few nucleotides as possible without reducing the length of any allele to 0

Left (right) aligning =

shifting the start position of a variant as far to the left (right) as possible

How should I sort my SAM/BAM file?

- Generally BAM files are sorted by position
 - This is for performance reasons
 - When sorted and indexed, arbitrary positions in a massive BAM file can be accessed rapidly
- Certain tools require a BAM sorted by <u>read name</u>
 - Usually this is when we need to easily identify both reads of a pair
 - The insert size between two reads may be large
 - In fusion detection we are interested in read pairs that map to different chromosomes

We are on a Coffee Break & Networking Session

