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Applications of
Single Cell Sequencing



We are all made of cells: tissues consist of immune, stromal & 
many other cell types that interact physically and functionally
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Learning Objectives

1) Understand the conceptual shift in moving from bulk to single 
cell profiling

2) Become acquainted with types, parameters and trade-offs of 
various single cell technologies

3) Using cancer as an example, be exposed to scientific questions 
and experimental designs utilizing single cell analysis

4) Appreciate new scientific and translational opportunities 
enabled by integrative single cell molecular profiling



Single cell analysis is not new…the revolution is in the scale, 
completeness, & quantitative nature of genomic technologies

One karyotype in one cell

In situ hybridization of one transcript

Quantification of all chromsomes in all cells

Visualization of 1,000s of genes expressed in all cells

Genome-wide analysis using normal oligodendocytes as controls uncovers 
CNVs that par$ally dis9nguish clusters
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e.g. Six cells with heterogeneous
expression of three genes

Bulk analysis detects uniform
expression of all three genes

Single-cell analysis directly
measures diversity of expression

Single-cell analysis reveals heterogeneity in molecular profiles
at resolution bulk analysis may not permit



“A wide variety of single-cell methods have now been developed 
to measure a broad range of cellular parameters”

Stuart and Satija. Nature Reviews Genetics. 20:257-272. May 2019
We will focus here

Lineage State Trajectory



Considerations and capabilities for 
generation of single cell data



“Exponential scaling of single-cell RNA-seq in the past decade”

Svensson, Vento-Tormo, and Teichmann. Nat Protoc. 2018 Apr;13(4):599-604.



Multiple pathways and technology options to analyze
100s-100,000s of single cells from a variety of sources

Proserpio and Lönnberg. Immunol Cell Biol. 2016 Mar;94(3):225-9. 

Tissue digestion 
and cell purification

Molecular 
barcoding

Sequence, Align, 
Normalize, Cluster



Multiple pathways and technology options to analyze
100s-100,000s of single cells from a variety of sources

Tissue digestion 
and cell purification

Molecular 
barcoding

Sequence, Align, 
Normalize, Cluster

Bulk profiling?
Isolate rare populations?
Split and sequence?

Full-length transcripts?
End-reads?
Combination?

CellRanger, Seurat, Biscuit, 
custom analyses

Proserpio and Lönnberg. Immunol Cell Biol. 2016 Mar;94(3):225-9. 



Wang and Song. Clin Transl Med. 2017; 6: 10.

Numerous methods to isolate single cells,
some more scalable than others



Nuclei RNA sequencing now routine: use frozen tissues but drawbacks of 
no cytoplasm, fewer transcripts, more introns, no cell type enrichment

Cells Nuclei Cells +
Nuclei

Neuroblastoma tumour

Slyper et al. Nat Med 26, 792–802 (2020). A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. 



Two commonly-employed RNA-seq strategies:
10X Genomics End-reads versus Smart-Seq2 Full-length transcripts

Baran-Gale, Chandra, and 
Kirschner K. Brief Funct
Genomics. 2017 Nov 8.

Figure modified from: 
Ziegenhain et al. Mol Cell. 2017 

Feb 16;65(4):631-643.e4. 

10x Genomics Chromium
$2-4/cell including sequencing

100–100,000 cells
3ʹ-tag method in droplets

Tagmentation, 3’ enrichment, 
Illumina sequencing

SmartSeq2
$28-69/cell including sequencing

96–384 cells
Full length capture in plates

Tagmentation, Illumina sequencing



Experimental design balancing transcript coverage, 
number of genes detected, and library complexity

Baran-Gale, Chandra, and Kirschner K. Brief Funct Genomics. 2017 Nov 8.

SMART-Seq2

10X Chromium

SMART-Seq2 (75 cells)10X Chromium (1384 cells)



Long-read sequencing technologies are applicable to 
DNA and RNA libraries barcoded at the single cell level

Short-read sequencing
(e.g. Illumina)

Long-read sequencing
(e.g. PacBio and Oxford Nanopore Technologies)

Chen and He. Medical Review. https://doi.org/10.1515/mr-2021-0013



Long-read sequencing technologies can enable complete 
reconstruction of transcript isoforms at the single cell level

https://www.ddw-online.com/full-length-isoform-sequencing-iso-seq-yields-a-more-comprehensive-view-of-gene-activity-1586-201608/
Chen and He. Medical Review. https://doi.org/10.1515/mr-2021-0013



New spatial technologies enable additional cellular metadata 
describing physical distances between cell types and cell states

https://www.10xgenomics.com/in-situ-technology Stuart and Satija. Nature Reviews Genetics. 20:257-272. May 2019

10X Genomics
Xenium



Canonical single-gene markers not always highly expressed in all cells
à move towards gene sets & multi-modal integration

scRNA-seq CITE-seq

CD138

CD139

Plasma cellsB cells

T cells Myeloid cells

CD138
also 

known as
SDC1

CD139
also

known as
SLAMF7



Stegle, Teichmann, and Marioni. Nat Rev Genet. 2015 Mar;16(3):133-45.

Numerous bioinformatic tools for quality control, normalization, 
clustering, ordering single cells, and more

Cell Ranger Single Cells Analysis suite

Seurat Single Cells Analysis suite



Tumours	are	dynamic	popula1ons	of	cancer,	immune,	and	other	cells	
that	change	in	frequency	and	func1on	over	the	course	of	treatment

Restifo NP. Immunity. 2013 Oct 17;39(4):631-2.

Cancer as an example



scRNA-seq in practice: How do cancer and immune systems 
change over time? Is there clinical relevance?

First-line treatment Second-line Third-line 

Tu
m

ou
r b

ur
de

n

100

50

25

0

MonitoringTime

scRNA-seq of models to 
understand early cancer

scRNA-seq while on clinical trials
to discover mechanisms of response/resistance



Watching immune systems evolve at the 
single cell level as cancer develops

Croucher et al. bioRxiv. 2021 Jan. 10.22.464971
Single-cell transcriptional analysis of the immune tumour microenvironment during myeloma disease evolution. 

Croucher et al. Nature Communications. 2021 Nov; 12(6322).
Longitudinal single-cell analysis of a myeloma mouse model identifies subclonal molecular programs associated with progression.



Myeloma begins as a benign condition that progresses to incurable 
malignancy that tides during treatment and can be tolerated as MRD

Asymptomatic Symptomatic

ACTIVE
MYELOMA

RELAPSE

Refractory Relapse

First-line therapy Second-line Third-line 
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Collaboration with Michael Sebag (McGill) and Leif Bergsagel (Mayo)
Mouse model published by Chesi et al. Cancer Cell. 2008 Feb; 13(2): 167–180.

Vκ*MYC mouse model enables serial dissection of bone marrow 
microenvironments during transition from MGUS to MM



Integrated data from  >90k cells from 12 mice during disease evolution

Coloured by
cluster ID



Focused re-analysis of plasma cells found A) normal plasma cells in all 
mice, B) evolving disease in ND & AMG mice, C) cells unique to each MM

Normal plasma cells
Myeloma onlyND à early disease?

AMG à developing
disease?



T-cells display increased exhaus2on signatures as myeloma develops

Validation 
by flow cytometry 
in transplantable 

mouse model 
(Vk12598)



*

*

aPD-1+aLAG3

Control

Combinatorial treatment with an/-LAG3 + an/-PD-1 an/bodies 
delays myeloma progression in transplantable mouse model 

(days)



Cancer stem cells & subclones inform 
tumour development & treatment outcome

Richards, Whitley et al. Nature Cancer. 2021 Feb. 
Gradient of developmental and injury-response transcriptional states defines

functional vulnerabilities underpinning glioblastoma heterogeneity



Glioblastomas contain self-renewing cancer stem cells that 
contribute to tumour initiation and therapeutic resistance 



Single cell RNA-seq of
all cells within a tumour

Single cell RNA-seq of
only the brain tumour stem cells

Brain tumour stem cell cultures derived from primary GBMs



Are Brain Tumour Stem Cells comprised of 
gene7c and transcrip7onal subpopula7ons?

Homogeneous 
(Single popula7on)   

Heterogeneous   
(Mul7ple popula7ons) 

or

Single cell RNA-sequencing of 29 pa7ent-
derived glioblastoma stem cell cultures 



Within each stem cell culture, we find a range of dis5nct subpopula5ons

Cycling
IDH mutant



Genome-wide analysis using normal oligodendocytes as controls uncovers 
CNVs that par$ally dis9nguish clusters
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69,393 cells from 29 BTSC cultures from 26 patients demonstrate strong 
patient-specific transcriptional profiles, slight gradient from BT to G lines
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Pa#ents’ GSCs are all different….do they share any common biology?

Injury- 
response 
Programs

Developmental 
Programs



Subpopula(ons within brain tumour stem cells maintain rela(ve posi(on 
within the ini(al developmental/injury-response gradient



Profiling GSCs from many samples is necessary to characterize the full 
spectrum of possible transcrip:onal states giving rise to bulk GBM.



GSC gradient between Developmental and Injury Response is recapitulated in 
cells or nuclei from primary tumors, but bulk tumour cells can obscure



Bulk tumour cells “flow” from their progenitor GSCs’ posi;on on the 
Developmental/Injury Response Gradient



Func%onal dependencies iden%fied by genome-wide CRISPR 
screens reflect Developmental–Injury Response gradient posi%on

TKOv3 library: 70,948 guides targe:ng 18,053 protein-coding genes in 11 GSCs



 X

Gradients and clusters may be biologically interes3ng, 
but is there applica3on for pa3ents?

Heterogeneous   
(Multiple populations) 

Single cell RNA-sequencing of 25 patient-derived 
BTSC cultures 

Drug A

Drug B

Drug A + B



PharmacoDB aggregates gene expression, copy number, and pharmacogenomic 
profiles of cell lines from mul;ple high-throughput drug screening studies

www.pharmacodb.ca 

Smirnov, Petr, et al. "PharmacoDB: an integrative database 
for mining in vitro anticancer drug screening studies." 

Nucleic Acids Research (2017).


Smirnov, Petr, et al. "PharmacoGx: an R package for 
analysis of large pharmacogenomic datasets." 

Bioinformatics 32.8 (2015): 1244-1246.


Laboratory of Benjamin Haibe-Kains



Predict drug efficacy score for each cluster, calculate variation of 
score across each cell, establish dose/response, synergy assay

Coloured by predicted
response to dasatinib

Coloured by predicted
response to sorafinib

BT67



Predict drug efficacy score for each cluster, calculate variation of 
score across each cell, establish dose/response, synergy assay

Coloured by predicted
response to dasatinib

Coloured by predicted
response to sorafinib

BT67
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Predict drug efficacy score for each cluster, calculate variation of 
score across each cell, establish dose/response, synergy assay

Coloured by predicted
response to dasatinib

Coloured by predicted
response to sorafinib

BT67

10-4 10-3 10-2 0.1 1 10

10-4 10-3 10-2 0.1 1 10

IC50=3 uM

IC50=0.3 uM

Drug Dose log uM

Bliss Synergy Value

<-10 >10

SynergisticNot additive



 X

Summary: Gradients galore!

- Link single cell clusters to phenotype data (pathology, Incucyte, epigene8c probes) 
- Map GSC gradient posi8ons in primary and relapsed tumours (do they move?) 
- Test drug predic8ons in vitro to assess effect on specific clonal popula8ons 

depending on their posi8on on the developmental / injury response gradient

Ongoing & Next Steps
Hubert and Lathia. Nature Cancer 2021.

Gradients galore: RNA, metabolic, & proteomic profiling all 
identified continuous biological gradients in glioblastoma

Multiple, single cell approaches can converge and cross-validate biological signals

Single cell technologies can reveal biology not apparent from bulk approaches



Current and Future Directions

1. scRNA-seq
mouse model of

MGUS/SMM à MM

2. scRNA-seq while on clinical trials
to discover targets of response/resistance

First-line therapy Second-line Third-line 
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3. ctDNA profiling of myeloma & immune repertoire using large panels and custom capture

Putting it into practice: Can we prevent early cancer or 
observe subclonal drug responses in patients?
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Computational dissection of cells from a patient with multiple myeloma:
direct analysis of cell type, cell state, TCR/BCR, & subclonal copy number

MM cells only

T cells
only

infer
CNV

Gain 1q del13 del17p

17q gain Subclonal mapping



Somatic mutations in scRNA-seq data explain clonal responses



Revisiting the Learning Objectives

1) A plethora of single cell technologies have opened windows into 
cell biology that were closed using bulk approaches that 
“average out” signal

2) The same biology may be measurable using multiple methods 
à tailor experimental approaches to specific scientific questions 
answerable by available samples & technologies

3) Multiple cellular components can be queried from one single 
cell experiment, e.g. immune & cancer cells inhabiting tumours

4) “Fact-check” data quality, integrations, & conclusions using 
orthogonal experiments, external data sets, & clinical outcomes
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