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Recall: Gaussian (Normal) distributions
Two parameters: mean (𝜇) and standard deviation (𝜎)



https://www.nature.com/articles/nmeth.2613.pdf
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We are rarely able to observe an entire 
population. Instead, we take (ideally) 

random samples.
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Example: observed read alignments at TP53 from all single cells

hist(rpois(1000,2), main="Distribution of TP53 transcript counts from 1,000 single cells")



This is a "population distribution" of our random variable:
 (i.e., TP53 expression in single cells)



Single cell sequencing is expensive: 
What if we can only count reads at TP53 from 4 
cells at a time? This is a size 4 sample to estimate 
the population 

# sample 1
> rpois(4,2)
[1] 4 1 4 1
# sample 2
> rpois(4,2)
[1] 2 2 1 3
# sample 3
> rpois(4,2)
[1] 0 0 3 0
# sample 4
> rpois(4,2)
[1] 1 4 1 1
# sample 5
> rpois(4,2)
[1] 0 1 0 2

# sample 1 mean
2.5

# sample 2 mean
2.0

# sample 3 mean
0.75

# sample 4 mean
1.75

# sample 5 mean
0.75

0   1   2   3   4   5   6



Let's repeat this 1000 times using 
a sample of 4 cells.

# sample 1
> rpois(4,2)
[1] 2 2 2 0
# sample 2
> rpois(4,2)
[1] 2 2 1 3

...

# sample 1000
> rpois(4,2)
[1] 0 1 0 2

# sample 1 mean
1.5

# sample 2 mean
1.0

# sample 1000 mean
1.75

What does this distribution 
look like?



Central Limit Theorem:
As the sample size increases, the means of samples will 
become increasingly close to a normal distribution with a mean 
(𝞵) equal to the mean of the population!

Mean of the sample means = 1.97

Population mean = 2



Sampling distribution simulator

https://onlinestatbook.com/stat_sim/sampling_dist/



Central Limit Theorem holds true for any distribution

https://www.nature.com/articles/nmeth.2613/figures/2

"Just like the population, the sampling distribution [of sample 
means] is not directly measurable because we do not have access 
to all possible samples. However, it turns out to be an extremely 
useful concept in the process of estimating population statistics."

https://www.nature.com/articles/nmeth.2613/figures/2


Why do we care?

https://www.nature.com/articles/nmeth.2613/figures/2

● Knowing that the sample means will always be 
normally- distributed means (ha!) that we don't need to 
know the properties of underlying population 
distribution.

● This allows us to compute confidence interval
● Run t-tests between samples of two different 

populations
● Run ANOVAs between samples of three or more 

different populations

https://www.nature.com/articles/nmeth.2613/figures/2


With larger sample sizes (n), the standard deviation of the 
sample means decreases

https://www.nature.com/articles/nmeth.2613/figures/3

σX̅ = σ/√n

Standard deviation of the 
sample means

Standard deviation of the 
population

As n increases, σX̅ decreases. 
That is, the samples will have 
more similar means. Most 
importantly, when using a larger 
n, your sample mean is much 
more likely to be close to the 
true population mean. This is 
important in biology because 
we typically do one sample of 
size n (i.e., n replicates).

https://www.nature.com/articles/nmeth.2613/figures/3


Be wary of small sample sizes. They can cause many of the 
sample means to vary substantially from the true population 
mean

"It is still possible for a sample 
mean to fall far from the population 
mean, especially for small n. For 
example, in ten iterations of 
drawing 10,000 samples of size n 
= 3 from the irregular distribution, 
the number of times the sample 
mean fell outside μ ± σ (indicated 
by vertical dotted lines) ranged 
from 7.6% to 8.6%. 

Thus, use caution when 
interpreting means of small 
samples."



Samples better approximate population as n increases.

The measured spread of sample 
means is also known as the standard 
error of the mean (s.e.m., SEX̅) and is 
used to estimate σX̅, which we cannot 
know because we cannot collect all 
possible samples.

A sample size of 30 is often 
recommended.



Estimates from samples have uncertainty.
How can we quantify the degree to which a (random) 
sample's mean and standard deviation is a good 
representation of the true population's mean and standard 
deviation? 



Error bars are commonly used, misused, and misunderstood



Two types of error bars: descriptive and 
inferential

Descriptive error bars
• Meant to give show the “spread” of the data
• Range (min to max value)
• Standard deviation (SD)
• Useful for asking whether a single result fits 

within a normal range (e.g., cholesterol levels)
• Not useful for comparison of conditions or 

groups



Two types of error bars: descriptive and 
inferential
In biology, we typically 
want to compare samples 
from different groups or 
experimental conditions 
(e.g., wild-type to mutant, 
experimental versus 
control). In order to make 
inferences and convey 
whether the groups are 
significantly different 
beyond what could be 
expected by random 
chance, we should use 
inferential error bars SE and CI give a sense of where the mean of the 

complete population should lie



Rule #1: Legends must state type of error bar
Because error bars can be descriptive or inferential, and could be any of the 
bars below or even something else, they are meaningless, or misleading, if 
the legend does not state what kind they are.



Confidence Intervals as error bars

A big advantage of inferential error bars is that their length gives a graphic signal of how 
much uncertainty there is in the data: We are asserting that the 95% of the intervals we 
make will cover the true population mean (μ). Wide inferential bars indicate large error; 
short inferential bars indicate high precision.

In 20 repetitions of 
the study, the true 
population mean 
(dashed line)
fell outside of the 
95% CI twice. In the 
long run (that is, if 
we did this hundreds 
or thousands of 
times, it should fall 
outside of the CI 5% 
of the time



Confidence Intervals as error bars

Hat tip to Brent Pedersen: https://twitter.com/LucyStats/status/1181542102779531264

Code to generate CI simulation: 
https://github.com/leonjessen/confidence_intervals_visualised

https://twitter.com/LucyStats/status/1181542102779531264
https://github.com/leonjessen/confidence_intervals_visualised


Rule #2: The value of n (i.e., the sample size, or the 
number of independently performed experiments) 
must be stated in the figure legend.
What is n?
• N is the number of independent experiments, not the number of replicates
• Example: you select one mutant and one wild type mouse and perform 10 

experiments in replicate on each of their tails.
• The mean and SD of the replicates is not sufficient for a figure, as n=1 for each 

mouse genotype. This design does not measure natural variation from animal to 
animal.

• “If an experiment involves triplicate cultures, and is repeated four independent 
times, then n = 4, not 3 or 12. The variation within each set of triplicates is 
related to the fidelity with which the replicates were created, and is irrelevant to 
the hypothesis being tested.”



Inferential error bars shrink with larger n

Rule #3: error bars and statistics should only be shown for independently repeated 
experiments, and never for replicates. If a “representative” experiment is shown, it should 
not have error bars or P values, because in such an experiment, n = 1



Estimating significance with inferential SE error bars

The “Gap” refers to the 
number of error bar lengths 
that separate the two 
conditions. 

When N=3 and Gap between 
the control and experimental 
SE error bars is >= 2, then 
P~0.05. 

However, when N>=10, a gap 
of >=2 yields P~0.01.



Estimating significance with inferential CI error bars
When n=3 and overlap 
between the control and 
experimental SE error bars is 
1, then P~0.05. 

However, when n>=10, an 
overlap of 0.5 yields P~0.05. 

When using CI and n>=10, 
error bars that touch (overlap 
= 0), p~0.01. 

Know the type of error bar to 
know how to interpret the 
error bar overlap. 



Overall recommendation for comparison / 
inference. Use confidence intervals for error bars.

“Determining CIs requires slightly more calculating by 
the authors of a paper, but for people reading it, CIs 
make things easier to understand, as they mean
the same thing regardless of n. For this reason, in 
medicine, CIs have been recommended for more than 
20 years, and are required by many journals.”


