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The Central Limit
Theorem
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Recall: Gaussian (Normal) distributions

Two parameters: mean () and standard deviation (o)

99.7% of the data are within
3 standard deviations of the mean >
95% within
2 standard deviations
68% within
<— 1 standard —>
deviation
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Importance of being
uncertain

Statistics does not tell us whether we are right. It tells
us the chances of being wrong.

https://www.nature.com/articles/nmeth.2613.pdf



https://www.nature.com/articles/nmeth.2613.pdf

When an experiment is reproduced we almost never obtain exactly
the same results. Instead, repeated measurements span a range of val-
ues because of biological variability and precision limits of measuring
equipment. But if results are different each time, how do we determine
whether a measurement is compatible with our hypothesis? In “the
great tragedy of Science—the slaying of a beautiful hypothesis by an
ugly fact”!, how is ‘ugliness’ measured?

https://www.nature.com/articles/nmeth.2613.pdf
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We are rarely able to observe an entire
population. Instead, we take (ideally)

random samples.
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Example: observed read alignments at TP53 from all single cells

Distribution of aligned reads from 1,000 cells
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hist (rpois(1000,2), main="Distribution of TP53 transcript counts from 1,000 single cells")



This is a "population distribution" of our random variable:
(i.e., TP53 expression in single cells)

Distribution of aligned reads from 1,000 cells
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Single cell sequencing is expensive:

What if we can only count reads at TP53 from 4
cells at a time? This is a size 4 sample to estimate
the population

Frequency
0 100 200 300 400

Distribution of aligned reads from 1,000 cells
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rpois(1000, 2)

# sample 1

> rpois (4,2) # sample 1 mean
[1] 4 1 4 1 — 2.5

# sample 2

> rpois (4,2) # sample 2 mean
[1] 2 2 1 3 - 2.0

# sample 3

> rpois (4,2) # sample 3 mean
[1] O 0 30 - 0.75

# sample 4

> rpois (4,2) # sample 4 mean
111411 —— 1.75 o1
# sample 5

> rpois (4,2) # sample 5 mean

[1] 0 1 0 2 — 0.75



Distribution of aligned reads from 1,000 cells

Let's repeat this 1000 times using
a sample of 4 cells.

Frequency
0 100 200 300 400
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0 2 4 6

rpois(1000, 2)

# sample 1 ___ . # sample 1 mean

> rpois (4,2) 1.5

[11 2220 Hist of means of 1000 samples of size 4

# sample 2 __ . # sample 2 mean

> rpois (4, 2) 1.0 &

(1] 2 2 1 3

# sample 1000 ’ 1 . ’ ’
> rpois(4,2) # sample 1000 mean e

[1] 01 0 2 1.75

What does this distribution
look like?



Central Limit Theorem:

As the sample size increases, the means of samples will
become increasingly close to a normal distribution with a mean
(1) equal to the mean of the population!

Distribution of aligned reads from 1,000 cells

Population mean = 2

T T
6
rpois(1000, 2)

Hist of means of 1000 samples of size 4

Mean of the sample means = 1.97
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Sampling distribution simulator

https://onlinestatbook.com/stat_sim/sampling_dist/



Central Limit Theorem holds true for any distribution

d Population b Sample C Sampling distribution of
e S Samples
distribution means sample means
u Uz
%) = %)
S X1 =[1,9,17,20,26] X1=14.6 S
qg)- Xo=1[8,11,16,24,25] X>=16.8 §‘
= X3=[16,17,18,20,24] X3=19.0 [

0 % 30 0 Og 30

"Just like the population, the sampling distribution [of sample
means] is not directly measurable because we do not have access
to all possible samples. However, it turns out to be an extremely
useful concept in the process of estimating population statistics."

https://www.nature.com/articles/nmeth.2613/figures/2
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Why do we care?

e Knowing that the sample means will always be
normally- distributed means (ha!) that we don't need to
know the properties of underlying population
distribution.

e This allows us to compute confidence interval

e Run t-tests between samples of two different
populations

e Run ANOVAs between samples of three or more
different populations

https://www.nature.com/articles/nmeth.2613/figures/2
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With larger sample sizes (n), the standard deviation of the

sample means decreases Standard deviation of the
sample means
Population distribution
Normal Skewed Uniform Irregular \

AL_M X =0/Vn

Samphng distribution of sample mean

Standard deviation of the
population

As n increases, oX decreases.
That is, the samples will have
more similar means. Most

importantly, when using a larger
1 n, your sample mean is much

% more likely to be close to the
Shown are sampling distributions of sample means for 10,000 samples for indicated sample sizes drawn from four different true population mean. This is
distributions. Mean and s.d. are indicated as in Figure 1. importa ntin biology because

we typically do one sample of
size n (i.e., n replicates).

https://www.nature.com/articles/nmeth.2613/fiqures/3
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Be wary of small sample sizes. They can cause many of the
sample means to vary substantially from the true population
mean

Population distribution
Normal Skewed Uniform Irregular

AL_LM

"It is still possible for a sample
mean to fall far from the population
mean, especially for small n. For
example, in ten iterations of
drawing 10,000 samples of size n
= 3 from the irregular distribution,
the number of times the sample
mean fell outside p + o (indicated
by vertical dotted lines) ranged
from 7.6% to 8.6%.

Thus, use caution when
interpreting means of small

samples."

ampllng distribution of sample mean

Shown are sampling distributions of sample means for 10,000 samples for indicated sample sizes drawn from four different
distributions. Mean and s.d. are indicated as in Figure 1.



Samples better approximate population as n increases.
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. A sample size of 30 is often

recommended.

| Standard error of the mean (s.e.m.)
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The measured spread of sample
means is also known as the standard
error of the mean (s.e.m., SEX) and is
used to estimate oX, which we cannot
know because we cannot collect all
possible samples.



Estimates from samples have uncertainty.

How can we quantify the degree to which a (random)
sample's mean and standard deviation is a good
representation of the true population's mean and standard

deviation?
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Error bars in experimental biology

Geoff Cumming,' Fiona Fidler,' and David L. Vaux?

Error bars are commonly used, misused, and misunderstood

FEATURE

School of Psychological Science and “Department of Biochemistry, Lo Trobe University, Melbourne, Victoria, Australia 3086

Error bars commonly appear in figures
in publications, but experimental
biologists are often unsure how they
should be used and interpreted. In this
arficle we illustrate some basic features
OF error b(]rs und explclin how fhey can
help communicate data and  assist
correct interpretation. Error bars may
show confidence intervals, standard
errors, standard deviations, or other
quantities. Different types of error bars
give quite different information, and so
figure legends must make clear what
error bars represent. We suggest eight
simple rules to assist with effective use
and interpretation of error bars.

What are error bars for?

Journals that publish science—knowledge
gained through repeated observation or
experiment—don’t  just present new
conclusions, they also present evidence so
readers can verify that the authors’
reasoning is correct. Figures with error bars

error bars encompass the lowest and high-
est values. SD is calculated by the formula

where X refers to the individual data
points, M is the mean, and X (sigma)
means add to find the sum, for all the n
data points. SD is, roughly, the average or
typical difference between the data points
and their mean, M. About two thirds of
the data points will lie within the region
of mean * 1 SD, and ~95% of the data
points will be within 2 SD of the mean.

It is highly desirable to
use larger n, to achieve
narrower inferential
error bars and more
precise estimates of true
population values.
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Figure 1. Descriptive error bars. Means with er-
ror bars for three cases: n =3, n= 10, and n =
30. The small black dots are data points, and the
column denotes the data mean M. The bars on
the left of each column show range, and the bars
on the right show standard deviation (SD). M and
SD are the same for every case, but notice how
much the range increases with n. Note also that
although the range error bars encompass all of
the experimental results, they do not necessarily
cover all the results that could possibly occur. SD
error bars include about two thirds of the sample,
and 2 x SD error bars would encompass roughly
95% of the sample.
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Two types of error bars: descriptive and

inferential

Dependent variable

Range and standard deviation

Range
~ 180

—— 28D

® & & o ¢ o0 o o o

n=10

Descriptive error bars

Meant to give show the “spread” of the data
Range (min to max value)

Standard deviation (SD)

Useful for asking whether a single result fits
within a normal range (e.g., cholesterol levels)
Not useful for comparison of conditions or
groups



Two types of error bars: descriptive and

inferential

In biology, we typically
want to compare samples
from different groups or
experimental conditions
(e.g., wild-type to mutant,
experimental versus
control). In order to make
inferences and convey
whether the groups are
significantly different
beyond what could be
expected by random
chance, we should use
inferential error bars

Table |. Common error bars

Error bar Type Description Formula
Range Descriptive  Amount of spread between the  Highest data point minus
extremes of the data the lowest

Standard deviation (SD)  Descriptive Typical or (roughly speaking) X — M2
average difference between the  Sp = fz(—_)
data points and their mean N1

Standard error (SE) Inferential A measure of how variable the ~ SE = SD/+/n

mean will be, if you repeat the
whole study many times

Confidence interval (Cl), Inferential A range of values you canbe ~ M = t,x SE, where
usually 95% ClI 95% confident contains the true  #,. is a critical value of
mean t. If nis 10 or more, the
95% Cl is approximately
M = 2 x SE.

SE and Cl give a sense of where the mean of the
complete population should lie



Rule #1: Legends must state type of error bar

Because error bars can be descriptive or inferential, and could be any of the
bars below or even something else, they are meaningless, or misleading, if

the legend does not state what kind they are.

Table |. Common error bars

Error bar Type Description

Formula

Range Descriptive  Amount of spread between the
extremes of the data

Standard deviation (SD)  Descriptive  Typical or (roughly speaking)
average difference between the
data points and their mean

Standard error (SE) Inferential A measure of how variable the
mean will be, if you repeat the
whole study many times

Confidence interval (Cl), Inferential A range of values you can be
usually 95% ClI 95% confident contains the true
mean

Highest data point minus
the lowest

(X - M?

SD =
n-1

SE = SD/+/n

M % t,,)x SE, where
tn-1) is a critical value of
t. If nis 10 or more, the
95% Cl is approximately
M = 2 x SE.




Confidence Intervals as error bars

80 +

70 In 20 repetitions of
Figure 2. Confidence intervals. Means and 60 - the StLUd.y’ the true
95% Cls for 20 independent sets of results, each o T popu atlo'n mean
of size n = 10, from a population with mean p. = S50 T (dashed line)
40 (mc;ksec;l b)f/ the:c():tlted line). In the l;:ng nljgv(;/e g } fell outside of the
expect 95% of suc s fo capture p; here o S JEFGAEERRNEE 0 :
so (large black dots) and 2 do not (open circles). 240 i ! T 95% Cl twice. _In _the
Successive Cls vary considerably, not only in po- g P long run (_that is, if
sition relative to ., but also in length. The varia- = we did this hundreds
tion from Cl to Cl would be less for larger sets of 55 LA or thousands of
results, for example n = 30 or more, but varia- L1 . .
tion in position and in Cl length would be even tlme.s, it should fa"(l)
greater for smaller samples, for example n = 3. W outside of the CI 5%

6 of the time

Repeats of the whole study

A big advantage of inferential error bars is that their length gives a graphic signal of how

much uncertainty there is in the data: We are asserting that the 95% of the intervals we
make will cover the true population mean (u). Wide inferential bars indicate large error;

short inferential bars indicate high precision.



Confidence Intervals as error bars

Lucy::assistant_prof( /) ¥ . .
@LucyStas Code to generate Cl simulation:
How do you teach students to interpret a 95% CI? https://qithub.com/leonjessen/confidence_intervals_visualised

B 95% confident the truth falls between x and y

ﬂ if we repeat the process many times, the truth will fall 100 $

within the Cls 95% of the time (not specific to x, y)

g the data btw x and y are supported at the 95% level : ==
comment

751 !;
i 95% confident... 13% =
4 if we repeat... 76% g 5
the data btw... 3% g ‘%
&J something else 7% é- = : }1
862 votes - Final results 3 i
6:09 AM - Oct 8, 2019 - Twitter for iPhone 5 g

251
6 Retweets 29 Likes g:
© 0 Q i ( i o=
ﬁ ;::I';‘i’nzrggﬁ J:y';’::i'ya” =08 v 025 o,ilo ‘ 025 0.50
Sample mean +/- 95% confidence interval whiskers

95% of the intervals you make will cover the true parameter value

Qa4 o 2 Q 7 & 4

(™ Rafael Irizarry @rafalab - Oct 8 v contains_pop_mean - yes —#- no
Jenny's is the one | use. 1 and 2 might confuse the student into thinking
the parameter is random when it's the interval that is random.

Q1 n QO 18 & 4_

Each sample is n=100 draws from N(0,1)

Hat tip to Brent Pedersen: https:/twitter.com/LucyStats/status/1181542102779531264


https://twitter.com/LucyStats/status/1181542102779531264
https://github.com/leonjessen/confidence_intervals_visualised

Rule #2: The value of n (i.e., the sample size, or the
number of independently performed experiments)
must be stated in the figure legend.

Whatis n?
e N is the number of independent experiments, not the number of replicates

e Example: you select one mutant and one wild type mouse and perform 10
experiments in replicate on each of their tails.

e The mean and SD of the replicates is not sufficient for a figure, as n=1 for each
mouse genotype. This design does not measure natural variation from animal to
animal.

e “If an experiment involves triplicate cultures, and is repeated four independent
times, then n =4, not 3 or 12. The variation within each set of triplicates is
related to the fidelity with which the replicates were created, and is irrelevant to
the hypothesis being tested.”



Inferential error bars shrink with larger n

Figure 4. Inferential error bars. Means with 80 - n=3 n=10 n=30
SE and 95% Cl error bars for three cases, rang- ]

ing in size from n = 3 to n = 30, with descrip- 70 °

tive SD bars shown for comparison. The small

black dots are data points, and the large dots

indicate the data mean M. For each case the K .

error bars on the left show SD, those in the mid- = . ol

dle show 95% Cl, and those on the right show £50 SE s §| c
SE. Note that SD does not change, whereas the 2 : B
SE bars and Cl both decrease as n gets larger. 840 (M, 0 0@ ® { ) { ®
The ratio of Cl to SE is the t statistic for that n, § p

and changes with n. Values of t are shown at the 230 s
bottom. For each case, we can be 95% confi- ) S5 el $as
dent that the 95% Cl includes p, the true mean.

The likelihood that the SE bars capture . varies 20

depending on n, and is lower for n = 3 (for such

low values of n, it is better to simply plot the data 10 " CUSE(H)

points rather than showing error bars, as we 450 5.5 5ok
have done here for illustrative purposes). 0 ' : :

Rule #3: error bars and statistics should only be shown for independently repeated
experiments, and never for replicates. If a “representative” experiment is shown, it should
not have error bars or P values, because in such an experiment,n=1



Estimating significance with inferential SE error bars

SE bars on independent means SE bars onindependent means
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Figure 5. Estimating statistical significance using the overlap rule for SE bars. Here, SE bars are shown
on two separate means, for control results C and experimental results E, when n is 3 (left) or nis 10 or
more (right). “Gap” refers to the number of error bar arms that would fit between the bottom of the error
bars on the controls and the top of the bars on the experimental results; i.e., a gap of 2 means the
distance between the C and E error bars is equal to twice the average of the SEs for the two samples.
When n = 3, and double the length of the SE error bars just touch (i.e., the gap is 2 SEs), P is ~0.05
(we don't recommend using error bars where n = 3 or some other very small value, but we include rules
to help the reader interpret such figures, which are common in experimental biology).

The “Gap” refers to the
number of error bar lengths
that separate the two
conditions.

When N=3 and Gap between
the control and experimental
SE error bars is >= 2, then

P~0.05.

However, when N>=10, a gap
of >=2 yields P~0.01.



Estimating significance with inferential Cl error bars

95% Cls onindependent means 95% Cls on independent means
n =3 ] n21 O I
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Figure 6. Estimating statistical significance using the overlap rule for 95% Cl bars. Here, 95% Cl bars
are shown on two separate means, for control results C and experimental results E, when n is 3 (left)
or nis 10 or more (right). “Overlap” refers to the fraction of the average Cl error bar arm, i.e., the
average of the control (C) and experimental (E) arms. When n = 10, if Cl error bars overlap by half
the average arm length, P = 0.05. If the tips of the error bars just touch, P = 0.01.

When n=3 and overlap
between the control and
experimental SE error bars is
1, then P~0.05.

However, when n>=10, an
overlap of 0.5 yields P~0.05.

When using Cl and n>=10,
error bars that touch (overlap
= 0), p~0.01.

Know the type of error bar to
know how to interpret the
error bar overlap.



Overall recommendation for comparison /
inference. Use confidence intervals for error bars.

“Determining Cls requires slightly more calculating by
the authors of a paper, but for people reading it, Cls
make things easier to understand, as they mean
the same thing regardless of n. For this reason, in
medicine, Cls have been recommended for more than
20 years, and are required by many journals.”



