Real world analyses with bedtools.

Applied Computational Genomics, Lecture 18 https://github.com/quinlan-lab/applied-computational-genomics Aaron Quinlan Departments of Human Genetics and Biomedical Informatics USTAR Center for Genetic Discovery University of Utah quinlanlab.org

Let's use bedtools to answer some real(ish) research questions.

Experimental design: what materials do we need?

- 1. We need a set of predicted enhancers in hESCs. ENCODE?
- 2. We need a deep catalog of genetic variation in the human genome. 1000 genomes?
- 3. We then need to count the number of genetic variants observed in each enhancer.

chromHMM: https://www.nature.com/articles/nmeth.1906.pdf

a

- 1. We need a set of predicted enhancers in hESCs. Let's focus on chr22 for simplicity.
- \$ wget <u>https://s3.amazonaws.com/bedtools-tutorials/web/hesc.chromHmm.bed</u>
- \$ grep "^chr22" hesc.chromHmm.bed > hesc.chromHmm.chr22.bed
- \$ head -n 5 hesc.chromHmm.chr22.bed

16076000

16084200

16084600

chr22

chr22

chr22

- chr22 16050000 16075600 13_Heterochrom/lo
- chr22 16075600 16076000 8_Insulator
 - 16084200 13_Heterochrom/lo
 - 16084600 8_Insulator
 - 16156800 13_Heterochrom/lo

Not at all enhancers.

1. We need a set of predicted enhancers in hESCs. How are the enhancers labeled?

\$ cut -f 4 hesc.chromHmm.chr22.bed | sort | uniq -c

- 444 10_Txn_Elongation
- 2875 11_Weak_Txn
- 514 12_Repressed
- 1213 13_Heterochrom/lo
 - 58 14_Repetitive/CNV
 - 29 15_Repetitive/CNV
- 251 1_Active_Promoter
- 671 2_Weak_Promoter
- 297 3_Poised_Promoter
- 149 4_Strong_Enhancer
- 335 5 Strong Enhancer
- 1656 6_Weak_Enhancer
- 2840 7_Weak_Enhancer
- 1218 8_Insulator
- 493 9_Txn_Transition

Let's focus on the strong enhancers

1. We need a set of predicted enhancers in hESCs.

\$ grep "Strong_Enhancer" hesc.chromHmm.chr22.bed > hesc.chromHmm.chr22.strong.enh.bed

```
# sanity check
$ wc -l hesc.chromHmm.chr22.strong.enh.bed
484
```


2. We need a deep catalog of genetic variation in the human genome. 1000 genomes

warning. 1.8 gigabytes. Will take a few minutes to download from 1000G FTP site
\$ wget
ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/ALL.wgs.phase3_shapeit2_mvncall_inte
grated_v5b.20130502.sites.vcf.gz

download the tabix index of the VCF file.

```
$ wget
```

ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/ALL.wgs.phase3_shapeit2_mvncall_inte
grated_v5b.20130502.sites.vcf.gz.tbi

extract just the genetic variants for chromosome 22 with tabix
\$ tabix -h ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf.gz 22 \
> 1000g.chr22.vcf
Extract just chromosome 22 variants
Detain the VCC header in the autout with header in the autout with header.

Retain the VCF header in the output with -h

3. We then need to count the number of genetic variants observed in each enhancer.

Well, now we have our enhancer file (hesc.chromHmm.chr22.enh.bed) and our variants file (1000g.chr22.vcf). How do we count the number of variants in each enhancer?

\$ bedtools intersect -a hesc.chromHmm.chr22.strong.enh.bed -b 1000g.chr22.vcf -c | head

***** WARNING: File hesc.chromHmm.chr22.strong.enh.bed has inconsistent naming convention for record:

17675000 17675600 5_Strong_Enhancer

3. We then need to count the number of genetic variants observed in each enhancer. *What happened?*

<pre>\$ head -n 5 hesc.chromHmm.chr22.strong.enh.bed</pre>	
chr22 17675000 17675600 5_Strong_Enhancer	
chr22 17679200 17679600 4_Strong_Enhancer	
chr22 17680000 17681000 4_Strong_Enhancer	
chr22 17681000 17681400 5_Strong_Enhancer	There is greatness in the
chr22 - 17714800 17717000 5_Strong_Enhancer	
	world. but there is also this.
\$ grep -v "^#" 1000g.chr22.vcf head -n 5 cut -f 1-6	
22 16050075 rs5 87697 622 A G 100	
22 4 1605 0115 rs587755077 G A 100	
22 16050213 rs587654921 C T 100	
22 16050319 rs587712275 C T 100	
22 16050527 rs587769434 C A 100	

3. We then need to count the number of genetic variants observed in each enhancer. Now we need to make the chromosome labels the same. Let's remove "chr" from the BED file with sed

\$ sed -e 's/^chr//' hesc.chromHmm.chr22.strong.enh.bed > hesc.chromHmm.chr22.enh.strong.nochr.bed

- 1. Give sed (stream editor) an expression with -e
- 2. The "s" operator is to <u>s</u>witch one pattern with another. In this case, we switch "chr" at the beginning of each line (^) with nothing "//". That is, remove it.

3. We then need to count the number of genetic variants observed in each enhancer. *Now we are ready for prime time!*

- \$ bedtools intersect -a hesc.chromHmm.chr22.strong.nochr.enh.bed -b 1000g.chr22.vcf -c
 | head
- 22 17675000 17675600 5 Strong Enhancer 25 17679200 17679600 4 Strong Enhancer 22 16 17680000 17681000 4 Strong Enhancer 22 41 17681400 <u>5</u> Strong_Enhancer 22 17681000 11 17717000 5 Strong Enhancer 22 17714800 60 22 17737800 17738000 5 Strong Enhancer 8 22 17739200 4 Strong Enhancer 17738000 50
 - 22 17739200 17740000 5_Strong_Enhancer 40
 - 22 17741600 17742400 <u>A</u>Strong_Enhancer 29

22 17744800 17745000 5_Strong_Enhancer 2

ZOObp versus ZZOObp

🗸 Oooooooh, look. Constraint!!!!

Wait a second...

3. We then need to count the number of genetic variants observed in each enhancer. *We need to compute the <u>density</u> of genetic variation, not the <u>count</u>.*

Density is variant count (column 5) divided by the length of the region (end - start)

3. We then need to count the number of genetic variants observed in each enhancer. *We need to compute the <u>density</u> of genetic variation, not the <u>count</u>.*

\$	head	hesc.	chromHmm.	chr22.	enh.	nochr	.vardensity	.bedgraph
----	------	-------	-----------	--------	------	-------	-------------	-----------

22	17675000	17675600	5_Strong_Enhancer	25	0.0416667
22	17679200	17679600	4_Strong_Enhancer	16	0.04
22	17680000	17681000	4_Strong_Enhancer	41	0.041
22	17681000	17681400	5_Strong_Enhancer	11	0.0275
22	17714800	17717000	5_Strong_Enhancer	60	0.0272727
22	17737800	17738000	5_Strong_Enhancer	8	0.04
22	17738000	17739200	4_Strong_Enhancer	50	0.0416667
22	17739200	17740000	5_Strong_Enhancer	40	0.05
22	17741600	17742400	4_Strong_Enhancer	29	0.03625
22	17744800	17745000	5_Strong_Enhancer	2	0.01

3. We then need to count the number of genetic variants observed in each enhancer. *We need to compute the <u>density</u> of genetic variation, not the <u>count</u>.*

Sort the enhancers by the column starting with density and ending with that column. Treat the values as numbers.

\$ sort -k6,6n hesc.chromHmm.chr22.enh.nochr.strong.vardensity.bedgraph | head

22	28245600	28247400	5_Strong_Enhancer	0	0 🔪	
22	21846400	21847600	5_Strong_Enhancer	1	0.000833333	
22	20402800	20403600	5_Strong_Enhancer	2	0.0025	
22	29331400	29331600	5_Strong_Enhancer	1	0.005	
22	36310454	36310654	4_Strong_Enhancer	1	0.005	<u> </u>
22	48205736	48205936	5_Strong_Enhancer	1	0.005	
22	20725800	20726200	4_Strong_Enhancer	3	0.0075	2
22	21795400	21797400	5_Strong_Enhancer	17	0.0085	
22	17744800	17745000	5_Strong_Enhancer	2	0.01	
22	29225800	29226000	5_Strong_Enhancer	2	0.01	

• Whoa! No variants from 2,504 genomes in a span of 1,800 bp!

Is approx. 0.0 variant density in an embryonic stem cell enhancer atypical?

\$ R

> enh_constraint <- read.table('hesc.chromHmm.chr22.enh.nochr.strong.vardensity.bedgraph', header=FALSE)
> hist(enh_constraint[,6], breaks=50, col='dodgerblue', xlab='var density', main="Dist. of enhancer variant density")

What sanity checks should we conduct to identify potential artifacts?

Q2. How could we compute genetic constraint for overlapping 10000bp windows along all of chromosome 22, and not just enhancers?

Q2. How could we compute genetic constraint for overlapping 10000bp windows along *all* of chromosome 22, and not just enhancers?

Experimental design: what materials do we need?

- 1. Now we need to create a BED file of overlapping, 10000bp windows tiled across chromosome 22.
- 2. We need a deep catalog of genetic variation in the human genome. 1000 genomes?
- 3. We then need to count the number of genetic variants observed in window.

Q2. How could we compute genetic constraint for overlapping 10000bp windows along *all* of chromosome 22, and not just enhancers?

Make equally-sized, yet overlapping windows (intervals in BED format) along each chromosome.

To do this, one MUST know the length of each chromosome. This is the purpose of a so-called "genome" file in BEDTOOLS

Q2. How could we compute genetic constraint for overlapping 1000bp windows along *all* of chromosome 22, and not just enhancers?

\$ curl <u>https://s3.amazonaws.com/bedtools-tutorials/web/genome.txt</u> > human.grch37.txt

<pre>\$ head human.grch37.txt</pre>	t column - ⁻
chr1	249250621
chr10	135534747
chr11	135006516
chr11_gl000202_random	40103
chr12	133851895
chr13	115169878
chr14	107349540
chr15	102531392
chr16	90354753
chr17	81195210

Q2. How could we compute genetic constraint for overlapping 1000bp windows along *all* of chromosome 22, and not just enhancers?

chr1 45000 55000

BY SA

Q2. How could we compute genetic constraint for overlapping 1000bp windows along *all* of chromosome 22, and not just enhancers? *Let's retain windows for just chromosome 22. And we now know we need to remove the "chr" from the chromosome label...*

\$ head human.grch37.22.10000w.5000s.bed

- 22 0 10000
- 22 5000 15000
- 22 10000 20000
- 22 15000 25000
- 22 20000 30000
- 22 25000 35000
- 22 30000 40000
- 22 35000 45000
- 22 40000 50000
- 45000 55000

Q2. How could we compute genetic constraint for overlapping 1000bp windows along *all* of chromosome 22, and not just enhancers? *Let's retain windows for just chromosome 22. And we now know we need to remove the "chr" from the chromosome label...*

\$ head human.grch37.22.10000w.5000s.vardensity.bedgraph

Hmmmm. Why are there so many windows with 0.0 variant density? Ideas?

Dist. of variant density in sliding 10kb windows

\$ R

> win_constraint <- read.table('human.grch37.22.10000w.5000s.vardensity.bedgraph', header=FALSE)</pre>

> hist(win_constraint[,5], breaks=50, col='dodgerblue', xlab='var density', main="Dist. of variant density in sliding 10kb
windows")

To test this idea, let's download the FASTA file for chromosome 22 (GRCh37).

\$ curl <u>http://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes/chr22.fa.gz</u> > chr22.fa.gz

```
$ gzip -d chr22.fa.gz
```

```
$ head -n 1 chr22.fa
>chr22
```

```
# we need to remove the "chr" from the header of the FASTA file as well.
$ sed -e 's/chr//' chr22.fa > chr22.numchrom.fa
```

```
$ head -n 1 chr22.numchrom.fa
>22
```


Now that we have the chr22 FASTA, let's investigate the nucelotide content of each 10kb window with the "getfasta" tool.

getfasta GACT TGAAGGT

AAAAAAG

Now that we have the chr22 FASTA, let's investigate the nucelotide content of each 10kb window with the "getfasta" tool.

\$ bedtools getfasta -bed human.grch37.22.10000w.5000s.vardensity.bedgraph -fi chr22.numchrom.fa -bedOut |
less

22 0 10000 0 0

Aha. Looks like masked sequence is our culprit. Let's use the "nuc" tool to just __count__ the number of Ns in the FASTA file for each 10kb window.

<pre>\$ bedtoo</pre>	ls nuc -	bed huma	n.grch37	.22.1000	0w.5000s	s.varder	sity.b	edgraph	-fi ch	r22.num	chrom.fa	a head	column -t	C
#1_usercol	2_usercol	3_usercol	4_usercol	5_usercol	6_pct_at	7_pct_gc	8_num_A	9_num_C	10_num_G	11_num_T	12_num_N	13_num_oth	14_seq_len	
22	0	10000	0	0	0.000000	0.000000	0	0	0	0	10000	0	10000	
22	5000	15000	0	0	0.000000	0.000000	0	0	0	0	10000	0	10000	
22	10000	20000	0	0	0.000000	0.000000	0	0	0	0	10000	0	10000	
22	15000	25000	0	0	0.000000	0.000000	0	0	0	0	10000	0	10000	
22	20000	30000	0	0	0.000000	0.000000	0	0	0	0	10000	0	10000	
22	25000	35000	0	0	0.000000	0.000000	0	0	0	0	10000	0	10000	
22	30000	40000	0	0	0.000000	0.000000	0	0	0	0	10000	0	10000	
22	35000	45000	0	0	0.000000	0.000000	0	0	0	0	10000	0	10000	
22	40000	50000	0	0	0.000000	0.000000	0	0	0	0	10000	0	10000	

Zero variant density because there are 10000 Ns in these regions. Therefore, one cannot align reads to these regions and thus one has no power to <u>detect</u> variation in these regions.

Let's use bioawk to filter out regions that have 1 or more "N" in the FASTA sequence. Recall that biowawk allows us to refer to columns in a file by <u>name</u> rather than solely by <u>number</u> in regular awk. Thanks Heng Li!

\$ bedtools nuc -bed human.grch37.22.10000w.5000s.vardensity.bedgraph -fi chr22.numchrom.fa \

bioawk -H -t -c bed '\$12_num_N ==0' \

> human.grch37.22.10000w.5000s.vardensity.bedgraph.noN.bed

\$ head human.grch37.22.10000w.5000s.vardensity.bedgraph.noN.bed | column -t

#1_usercol	2_usercol	3_usercol	4_usercol	5_usercol	6_pct_at	7_pct_gc	8_num_A	9_num_C	10_num_G	11_num_T	12_num_N	13_num_oth	14_seq_len
22	10510000	10520000	0	0	0.653900	0.346100	3800	1627	1834	2739	0	0	10000
22	10515000	10525000	0	0	0.625600	0.374400	3240	1789	1955	3016	0	0	10000
22	10520000	10530000	0	0	0.532900	0.467100	2350	2478	2193	2979	0	0	10000
22	10525000	10535000	0	0	0.568100	0.431900	2691	2093	2226	2990	0	0	10000
22	10530000	10540000	0	0	0.673900	0.326100	3280	1475	1786	3459	0	0	10000
22	10535000	10545000	0	0	0.675800	0.324200	3245	1607	1635	3513	0	0	10000
22	10540000	10550000	0	0	0.670500	0.329500	3659	1549	1746	3046	0	0	10000
22	10545000	10555000	0	0	0.656700	0.343300	3665	1598	1835	2902	0	0	10000
22	10550000	10560000	0	0	0.640300	0.359700	3369	1771	1826	3034	0	0	10000
Γ													

Much better. Now bimodal. Any ideas?

Dist. of variant density in sliding 10kb windows

\$ R

> win_constraint <- read.table('human.grch37.22.10000w.5000s.vardensity.bedgraph.noN.bed', header=FALSE)
> hist(win_constraint[,5], breaks=50, col='dodgerblue', xlab='var density', main="Dist. of variant density in sliding 10kb
windows")

Q3. How do we know if an observed number of intersections between two datasets is statistically significant? That is, is the observation more extreme than what we would expect by chance?

Experimental design: what materials do we need?

- 1. We need hESC enhancers.
- 2. We need a catalog of significant SNPs from Genome Wide Association Studies (GWAS).
- 3. We need to measure the number of <u>observed</u> overlaps between the two.
- 4. Lastly, we need to compare the <u>observed</u> to what we <u>expect</u> to assess the significance of the relationship between these two genomic "features".

1. We need hESC enhancers. This time, let's include strong and weak enhancers

\$ grep "Enhancer" hesc.chromHmm.bed | sed -e 's/chr//' > hesc.chromHmm.allenh.nochr.bed

\$ head hesc.chromHmm.allenh.nochr.bed

- 1 27537 27737 6_Weak_Enhancer
- 1 30337 30537 6_Weak_Enhancer
- 1 34737 34937 7_Weak_Enhancer
- 1 35737 35937 7_Weak_Enhancer
- 1 35937 36137 6_Weak_Enhancer
- 1 36137 36337 7_Weak_Enhancer
- 1 36337 36537 5_Strong_Enhancer
- 1 36537 37537 6_Weak_Enhancer
- 1 37537 37737 7_Weak_Enhancer
- 1 56337 56537 6_Weak_Enhancer

2. We need a catalog of significant SNPs from Genome Wide Association Studies (GWAS).

obtained from the UCSC Genome Browser's Table Browser
\$ wget https://s3.amazonaws.com/bedtools-tutorials/web/gwas.phenotype.bed

\$ sed -e 's/chr//' gwas.phenotype.bed > gwas.phenotype.nochr.bed

\$ head gwas.phenotype.nochr.bed | column -t

#chrom	chromStart	chromEnd	name	pubMedID	trait
1	780396	780397	rs141175086	26955885	Morning vs. evening chronotype
1	1005805	1005806	rs3934834	19851299	Body mass index
1	1079197	1079198	rs11260603	23382691	IgG glycosylation
1	1247493	1247494	rs12103	26192919	Ulcerative colitis
1	1247493	1247494	rs12103	26192919	Inflammatory bowel disease
1	1247493	1247494	rs12103	26192919	Crohn's disease
1	1247493	1247494	rs12103	23128233	Inflammatory bowel disease
1	1287054	1287055	rs186507655	27197191	Cancer (pleiotropy)
1	1723030	1723031	rs9660180	25673413	Body mass index

3. We need to measure the number of <u>observed</u> overlaps between the GWAS SNPs and hESC enhancers.

\$ wc -1 gwas.phenotype.nochr.bed
39335

\$ wc -l hesc.chromHmm.allenh.nochr.bed
240136

\$ bedtools intersect -a gwas.phenotype.nochr.bed -b hesc.chromHmm.allenh.nochr.bed -u | wc -l
2040

So 5.2% (2,040 of 39335) GWAS SNPs overlap at least 1 predicted enhancer in human embryonic stem cells. Is that interesting? How would we know?

4. Lastly, we need to compare the <u>observed</u> to what we <u>expect</u> to assess the significance of the relationship between these two genomic "features".

observed = 2,040
\$ bedtools intersect -a gwas.phenotype.nochr.bed -b hesc.chromHmm.allenh.nochr.bed -u | wc -l
2040

How do we derive an expectation (that is, a null hypothesis)? One way is to do a Monte Carlo simulation.

Experimental design:

- 1. Repeatedly (1000s of times) shuffle intervals randomly throughout the genome.
- 2. For each "shuffling", measure how many intersections there are.
- 3. Build up a distribution of the number of intersections observed for each shuffling.

Monte Carlo simulation by shuffling intervals and measuring intersections that occur "by chance"

Simulation animation from Ryan Layer (@ryanlayer)

4. Lastly, we need to compare the <u>observed</u> to what we <u>expect</u> to assess the significance of the relationship between these two genomic "features".

One must be careful about defining the "domain" of an experiment

The dilemma of choosing the ideal permutation strategy while estimating statistical significance of genome-wide enrichment

Subhajyoti De, Brent S. Pedersen and Katerina Kechris

Submitted: 30th April 2013; Received (in revised form): 13th June 2013

Abstract

Integrative analyses of genomic, epigenomic and transcriptomic features for human and various model organisms have revealed that many such features are nonrandomly distributed in the genome. Significant enrichment (or depletion) of genomic features is anticipated to be biologically important. Detection of genomic regions having enrichment of certain features and estimation of corresponding statistical significance rely on the expected null distribution generated by a permutation model. We discuss different genome-wide permutation approaches, present examples where the permutation strategy affects the null model and show that the confidence in estimating statistical significance of genome-wide enrichment might depend on the choice of the permutation approach. In those cases, where biologically relevant constraints are unclear, it is preferable to examine whether key conclusions are consistent, irrespective of the choice of the randomization strategy.

Keywords: genome-wide enrichment; statistical significance; permutation strategy; null distribution

One must be careful about defining the "domain" of an experiment

Figure I: (A) The basic principle behind permutation analysis to determine genome-wide enrichment of a genomic or epigenomic feature. (B) A different randomization strategy can produce a different expected distribution, and hence affect statistical significance of enrichment of the feature. In (Biii), disallowed regions are masked (gray) while shuffling with additional constraints. The displayed list does not represent the exhaustive list of possible randomization strategies. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.

Use the bedtools -incl (include regions) and -excl (exclude regions)

