SNP and INDEL discovery

CSHL Advanced Sequencing Technologies 2022

Goal: find all inherited variants in an individual's diploid genome.

Find inherited genetic variation by sequencing DNA from millions of cells

Each DNA cluster is amplified from a single strand from a single haploid chromosome from a single cell.

Scenario l: An individual is homozygous for the "reference" allele.

Ref ATCGGGTACCATCCAATGATTACC O - ATCGGGTACCATCCAATCATTAC. ATCGGGTACCATCCAATCATTACC

Scenario l: An individual is homozygous for the "reference" allele.

6. COMPLETE AMPLIFICATION

Several mallion dense dusters of doublestranded DNA are generated in each channe!

[^0]@seq1
ACCTTCGAACGGCGGGGGGTTACAA
$+$
! ' $^{* *}\left(\left(\left({ }^{* * *+)) \% \% \%++) .1^{* * *}}\right.\right.\right.$
@seq2
TGGAACCGAACGGCCCCGGTTACAT
!''*!!!!**+))+++++).1***
\longrightarrow @seq3
ACCTTCGAACGGCGGGGGGTTACAA $+$
$!^{\prime}{ }^{*}\left(\left(\left({ }^{* * *+}\right)\right) \% \% \%++\right) .1^{* * *}$ @seq4
TGGAACCGAACGGCCCCGGTTACAT

the inside sur inside surface of the flow cell channels.

Scenario l: An individual is homozygous for the "reference" allele.
© © ©

Scenario 2: An individual is homozygous for an

 "alternate" allele.

Ref ATCGGGTACCATCCAATGATTACC O - ATCGGGCACCATCCAATCATTAC. ATCGGGCACCATCCAATCATTACC

Scenario 2: An individual is homozygous for an "alternate" allele.

Scenario z: An individual is homozygous for an "alternate" allele.
© © ©

Scenario 3: An individual is heterozygous for an "alternate" allele.

Ref ATC.GGGTACCATCCAATGATTACC O - ATCGGGCACCATCCAATCATTAC' ATCGGGCACCATCCAATCATTACC ATCGGGTACCATCCAATCATTACC

Scenario 3: An individual is heterozygous for an

 "alternate" allele.

Scenario 3: An individual is heterozygous for an "alternate" allele.
© © ©

Why might finding heterozygous variants be harder?

The binomial distribution: adventures in coin flipping

$P($ heads $)=0.5$

$P($ tails $)=0.5$

Thinking about allele sampling with the binomial distribution

The binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of \underline{n} independent yes (e.g., "heads" or "reference allele") or no (e.g., "tails", or "alternate allele") experiments, each of which vields success with probability p.

The probability of getting exactly k successes in n trials is given by the probability mass function:

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

What is the probability of seeing $\mathrm{k}=1$ tails in $\mathrm{n}=3$ flips of a fair coin with the probability of a tail (p) $=0.5$?
3 choose $1=3 ; 0.5^{1}=0.5 ;(1-0.5)^{(3-1)}=0.25 .50 \ldots . . .3^{*} 0.5^{*} 0.25=0.375$
In R, the function would be: dbinom(1, size=3, prob=0.5)

What is the distribution of tails (alternate alleles) do we expect to see after 5 tosses (sequence reads)?

What is the distribution of tails (alternate alleles) do

 we expect to see after 5 tosses (sequence reads)?

R code: barplot(table(rbinom(30, 5, 0.5)))
30 experiments (students tossing coins)
5 tosses each
Probability of Tails

Number of "tails"

What is the distribution of tails (alternate alleles) do we expect to see after 15 tosses (sequence reads)?

What is the distribution of tails (alternate alleles) do we expect to see after 15 tosses (sequence reads)?

R code:

barplot(table(rbinom(30, 15, 0.5)))
30 experiments (students tossing coins)
15 tosses each
Probability of Tails

Number of "tails"

What is the distribution of tails (alternate alleles) do we expect to see after 30 tosses (sequence reads)?

Record your result in the following spreadsheet:

https://docs.google.com/spreadsheets/d/li8sA1KMeYc9UhWTnCgOtLFjCy8x5LlsBITcXrz5La94/edit?usp=sharing

What is the distribution of tails (alternate alleles) do we expect to see after 30 tosses (sequence reads)?

R code:
barplot(table(rbinom(30, 30, 0.5)))
30 experiments (students tossing coins)
30 tosses each
Probability of Tails

Number of "tails"

So, with 30 tosses (reads), we are much more likely to see an even mix of alternate and reference alleles at a heterozygous locus in a genome

> This is why at least a " $30 \mathrm{OX"} \mathrm{(} 30$ fold sequence coverage) genome is recommended: it confers sufficient power to find the majority of heterozygous alleles

Number of "alternate alleles"

Depth tackles the allele sampling issue and lower quality scores

Some real examples of SNPs in IGV: validating variants via manual review

Homozygous for the "C" allele

GTGCCGCACTCATAGCACAGCTGCTTGAAGACGCGCATGCGCACCGAGCCCGCCCGCTGGGCGCGGTCCAGGAACATGTGGAAGAGGATGACCACATGGGCAGACTGCCAGGTG
(c) (i) (O)

Heterozygous for the alternate allele

Individual 1

Individual 2

Which genotype prediction would you have more confidence in?

Sequencing errors fall out as noise (most of the time)

Sequencing errors

It is not always so easy

Random versus systematic error

Random versus systematic error

Figure 1 Types of errors. A screenshot from the IGV browser [21] showing three types of error in reads from an Illumina sequencing experiment: (1) A random error likely due to the fact that the position is close to the end of the read. (2) Random error likely due to sequence specific error- in this case a sequence of Cs are probably inducing errors at the end of the low complexity repeat. (3) Systematic error: although it is likely that the GGT sequence motif and the GGC motifs before it created phasing problems leading to the errors, the extent of error is not explained by a random error model. In this case, all the base calls in one direction are wrong as revealed by the 11 overlapping mate-pairs. In particular, all differences from the reference genome are base-call errors, verified by the mate-pair reads, which do not differ from the reference. Given the background error rate, the probability of observing 11 error-pairs at a single location, given that 11 mate-pair reads overlap the location, is 1.5×10^{-26}. Moreover, given the presence of such errors at a single location, the probability that all of the errors occur on the same strand (i.e., on the forward mate pair) is $\frac{1}{1024}=0.00098$. Note that the IGV browser made an incorrect SNP call at the systematic error site (colored bar in top panel).

Strand bias from PCR

Pileups of many differences from paralogy

research articie open acces

FLAGS, frequently mutated genes in public exomes Casper Shyr, Maja Tarailo-Graovac, Michael Gottlieb, Jessica JY Lee, Clara van Karnebeek and Wyeth W Wasserman ® BMC Medical Genomics 2014 7:64 \mid Dol: 10.1186/s12920-014-0064-y | © Shyr et al.; licensee BioMed Central Ltd. 2014 Received: 16 June 2014 Accepted: 24 October 2014 Published: 3 December 2014

Open Peer Review reports

Calling INDELs is _much_ harder than SNPs

INDEL "realignment"

Some excellent resources to learn about manual review

Griffith Lab guides to manual review in IGV:

- https://rnabio.org/module-02-alignment/0002/04/01/IGV/
- Standard operating procedure for somatic variant refinement of sequencing data with paired tumor and normal samples

[^0]: of the flow cell.

