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In biology, we often use samples to 
estimate the behavior of the full 
population (of molecules, cells, 
individuals). Sampling introduces 
uncertainty.



Comparing observations

One sample t-test
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Recall: Central Limit Theorem holds true for any distribution

https://www.nature.com/articles/nmeth.2613/figures/2

As the sample size increases, the means of samples will become 
increasingly close to a normal distribution with a mean (𝞵) equal to 
the population sample!

https://www.nature.com/articles/nmeth.2613/figures/2


With larger sample sizes (n), the standard deviation of the 
sample means decreases

https://www.nature.com/articles/nmeth.2613/figures/3

σX̅ = σ/√n

Standard deviation of the 
sample means. 

Standard deviation of the 
population

As n increases, σX̅ decreases. 
That is, the samples will have 
more similar means. Most 
importantly, when using a larger 
n, your sample mean is much 
more likely to be close to the 
true population mean. This is 
important in biology because 
we typically do one sample of 
size n (i.e., n replicates).

https://www.nature.com/articles/nmeth.2613/figures/3


Samples better approximate population as n increases.

The measured spread of sample 
means is also known as the standard 
error of the mean (s.e.m., SEX̅, s/) and 
is used to estimate σX̅, which we 
cannot know because we cannot 
collect all possible samples. 

The s.e.m. (s/√n) measures how well 
the sample mean approximates the 
population mean.

A sample size of 30 is often 
recommended.



Is our observed value significantly different than a 
reference value?

https://www.nature.com/articles/nmeth.2698/figures/1

Assume that technical factors can lead 
to random fluctuations that disperse 
measurements forming the null 
distribution, which encapsulates the 
null hypothesis (H0). We assume that 
the null distribution is normally 
distributed.

Is this observed difference 
compared to the reference value 
due to random chance?

?

Statistical tests locate an 
observation on a null distribution to 
measure the degree to which it is an 
outlier. In other words, what is the 
probability of sampling another 
observation from the null 
distribution that is as far away from 
𝜇? This probability is the P-value

https://www.nature.com/articles/nmeth.2698/figures/1


P-values from two-tailed versus one-tailed tests

https://www.nature.com/articles/nmeth.2698/figures/1

Two tailed test: what is 
the probability of 
measuring a value at least 
as far as x from 𝜇? That is, 
the gray and the black 
areas under the null 
distribution

One tailed test: what is 
the probability of 
measuring a value greater 
than x? That is, only the 
black area under the null 
distribution

https://www.nature.com/articles/nmeth.2698/figures/1


But we need to control for the noise in our measurement!
We assume the reference value (that is, the population mean, 𝜇=10) comes from many precise estimates 
and is correct. We need to know the "noise" in our measurement of protein expression to assess whether 
our observed expression value (x=12) is expected under the null. We therefore estimate the spread of our 

measurement with repeated measurements.

obs_exp = c(12.0,11.5,9.5,10.5,10.8)
mean(obs_exp)
[1] 10.86
sd(obs_exp) # s.d.
[1] 0.9607289
sd(obs_exp)/sqrt(length(obs_exp)) # s.e.m
[1] 0.429651

We assume that our sample standard 
deviation is representative of the 
standard deviation of the null 
distribution, even if our sample mean is 
not. This assumption of "equal 
variances" is commonly used.

As we learned from the Central Limit Theorem, 
since the null distribution is normal, we know 
the the sampling distribution of means will 
also be normal. Therefore, we can use the 
s.e.m. to estimate the s.d. on the null 
distribution of the sample means. We then 
locate the average expression on this revised 
null to compute a p-value.



The test statistic (t) measures "signal" versus "noise" 

As we learned from the Central Limit Theorem, 
since the null distribution is normal, we know 
the the sampling distribution of means will 
also be normal. Therefore, we can use the 
s.e.m. to estimate the s.d. on the null 
distribution of the sample means. We then 
locate the average expression on this revised 
null to compute a p-value.

"signal"

"Noise" 
(s.e.m.)

obs_exp = c(12.0,11.5,9.5,10.5,10.8)
xhat = mean(obs_exp) # xhat
[1] 10.86 
s = sd(obs_exp) # s.d.
[1] 0.9607289
sem = sd(obs_exp)/sqrt(length(obs_exp)) # s.e.m
[1] 0.429651
tstat = (xhat - 10.0)/sem # u, the reference value is 10
[1] 2.001624

https://www.nature.com/articles/nmeth.2613/figures/3

https://www.nature.com/articles/nmeth.2613/figures/3


William Gosset, a.k.a. "Student". Worked at Guinness

"In his job as Head Experimental Brewer at Guinness, the 
self-trained Gosset developed new statistical methods. In his job 
as Head Experimental Brewer at Guinness, the self-trained 
Gosset developed new statistical methods. He published under 
the pseudonym 'Student' (to avoid difficulties with his employer, 
Guinness) in his work on optimizing barley yields. Trained with 
Karl Pearson. Developed most famously Student's t-distribution 
(originally called Student's "z") and "Student's test of statistical 
significance". https://en.wikipedia.org/wiki/William_Sealy_Gosset

https://en.wikipedia.org/wiki/Guinness
https://en.wikipedia.org/wiki/William_Sealy_Gosset


The shape of the sampling distribution is close to, but not 
quite normal. Instead, we use the t-distribution.

The t distribution has higher tails than the 
normal that take into account that most 
samples will underestimate the variability 
in a population. Better estimate of "noise" 

The test statistic (t) is compared to this 
distribution and is thus called the 
t-statistic.

t = (xhat - 10.0)/sem 
[1] 2.001624

https://www.nature.com/articles/nmeth.2613/figures/3

https://www.nature.com/articles/nmeth.2613/figures/3


T-distribution parameters: mean, degrees of freedom (v)

(i.e., Normal)

The mean is assumed to be 0, unless otherwise 
stated. Why? 
Well, the test statistic, t, is itself a random variable 
and it comes from the difference between the sample 
mean and the population mean. The null distribution 
of this random variable should be centered at 0 since 
the sample mean should be greater than the 
population mean just as frequently as it is less than 
the population mean.

The second parameter is the degrees of freedom 
(v), which is the number of variables that are free to 
independently vary. For the t-distribution, the 
degrees of freedom (v) is n-1. Why n-1?  If you know 
sample mean, you only need n-1 of the samples to 
infer the nth sample (algebra). It has no "freedom" to 
vary.



"When n is small, P values derived from the t-distribution 
vary greatly as n changes."

https://www.nature.com/articles/nmeth.2613/figures/3

https://www.nature.com/articles/nmeth.2613/figures/3


The test statistic is compared to the t-distribution with the 
correct n (and thus degrees of freedom (v = n-1)

obs_exp = c(12.0,11.5,9.5,10.5,10.8)
xhat = mean(obs_exp) # xhat
[1] 10.86 
s = sd(obs_exp) # s.d.
[1] 0.9607289
sem = sd(obs_exp)/sqrt(length(obs_exp)) 
[1] 0.429651
t = (xhat - 10.0)/sem 
[1] 2.001624

https://www.nature.com/articles/nmeth.2613/figures/3

https://www.nature.com/articles/nmeth.2613/figures/3


Use the R function t.test() to compute a one-sample t-test!

t = (xhat - 10.0)/sem 
[1] 2.001624

t.test(obs_exp, mu = 10, alternative = "two.sided")

One Sample t-test

data:  obs_exp
t = 2.0016, df = 4, p-value = 0.1159
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:
  9.667098 12.052902
sample estimates:
mean of x 

    10.86 

https://www.nature.com/articles/nmeth.2613/figures/3

https://www.nature.com/articles/nmeth.2613/figures/3


In biology, we often want to compare the means of two 
different samples.



One-sample versus two-sample t-test

One sample t-test: Compare observed 
sample mean to reference value while 
accounting for uncertainty in the sample 
mean.

Two sample t-test: Compare two 
observed samples means while 
accounting for the combined uncertainty 
in the sample means.

https://www.nature.com/articles/nmeth.2613/figures/3

https://www.nature.com/articles/nmeth.2613/figures/3


Two-sample t-test

Start with the variance of 
the two conditions, X 
(untreated) and Y (treated)

Compute the mean of each 
condition and adjust the 
variance by the sample size 
to assess how uncertain 
the variance for each 
condition is. 

The test statistic (t) now 
reflects the difference of 
the means (approximately 
1) with respect to the 
"pooled variance" of the 
two conditions



Let's work through an example. Compare mouse fed 
different diets. Modified from Love and Irizarry.

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

# read in weight data from mice fed two different diets.
dat = 

read.csv("https://raw.githubusercontent.com/genomicsclass/da
gdata/master/inst/extdata/femaleMiceWeights.csv")

# peek
head(dat, n=3)
  Diet Bodyweight
1 chow      21.51
2 chow      28.14
3 chow      24.04

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html


Plot the female mice fed different diets.

# read in weight data from mice fed two different diets.
dat = 
read.csv("https://raw.githubusercontent.com/genomicsclass/da
gdata/master/inst/extdata/femaleMiceWeights.csv")

# peek
head(dat, n=3)
  Diet Bodyweight
1 chow      21.51
2 chow      28.14
3 chow      24.04

# bring in useful libraries
library(dplyr)
library(ggplot2)

# box plot the weights of the control and
# high fat female mice
dat %>% ggplot(aes(x=Diet, y=Bodyweight)) + 
    geom_boxplot() + 
    geom_jitter(shape=16, position=position_jitter(0.2))

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html


Welch's two-sample t-test (unequal variances)

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

"signal"
"Noise" 
(s.e.m.)

The test statistic (t) for one sample is 
a measure of signal versus noise

Same goes for the two-sample test, 
but we must account for "pooled" 
noise.

"signal"
"Noise" 
pooled

Reminder: 
standard 
deviation is 
the square 
root of the 
variance

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html


Welch's two-sample t-test (unequal variances)

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

"signal"
"Noise" 
pooled

# subset the two groups
control = dat %>% filter(Diet=="chow")
highfat = dat %>% filter(Diet=="hf")  

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html


Welch's two-sample t-test (unequal variances)

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

"signal"
"Noise" 
pooled

# subset the two groups
control = dat %>% filter(Diet=="chow")
highfat = dat %>% filter(Diet=="hf")  
# compute the difference of means. The numerator of t
diff_of_means = mean(highfat$Bodyweight) - mean(control$Bodyweight)
# [1] 2.375517
# theory tells us that the variance of the difference of two random variables is the 
sum of its variances, so we compute the variance and take the square root
pooled_se_noise <- sqrt(var(highfat$Bodyweight)/nrow(highfat) + 
                  var(control$Bodyweight)/nrow(control))

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html


Welch's two-sample t-test (unequal variances)

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

"signal"
"Noise" 
pooled

# subset the two groups
control = dat %>% filter(Diet=="chow")
highfat = dat %>% filter(Diet=="hf")  
# compute the difference of means. The numerator of t
diff_of_means = mean(highfat$Bodyweight) - mean(control$Bodyweight)
# [1] 2.375517
# theory tells us that the variance of the difference of two random variables is the 
sum of its variances, so we compute the variance and take the square root
pooled_se_noise <- sqrt(var(highfat$Bodyweight)/nrow(highfat) + 
                  var(control$Bodyweight)/nrow(control))
# compute tstat
tstat = diff_of_means / pooled_se_noise

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html


Welch's two-sample t-test (unequal variances)

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

# subset the two groups
control = dat %>% filter(Diet=="chow")
highfat = dat %>% filter(Diet=="hf")  
# compute the difference of means. The numerator of t
diff_of_means = mean(highfat$Bodyweight) - mean(control$Bodyweight)
# [1] 2.375517
# theory tells us that the variance of the difference of two random variables is the 
sum of its variances, so we compute the variance and take the square root
pooled_se_noise <- sqrt(var(highfat$Bodyweight)/nrow(highfat) + 
                  var(control$Bodyweight)/nrow(control))
# compute tstat
tstat = diff_of_means / pooled_se_noise
#[1] 2.055174

?

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html


Welch's two-sample t-test (unequal variances)

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

"signal"
"Noise" 
pooled

# compute the two sample t-test
t.test(highfat$Bodyweight, control$Bodyweight)

Welch Two Sample t-test
data:  highfat$Bodyweight and control$Bodyweight
t = 2.0552, df = 20.236, p-value = 0.053
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.04296563  6.08463229
sample estimates:
mean of x mean of y 
 26.83417  23.81333 

Here, the degrees of 
freedom is close to but 
not quite N-1 + M-1. 
Instead it is a more 
complicated "pooled" 
degrees of freedom. 
Read this for more info.

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html
https://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation


What could be done to increase confidence in rejecting the 
null hypothesis?

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

# compute the two sample t-test
t.test(highfat$Bodyweight, control$Bodyweight)

Welch Two Sample t-test
data:  highfat$Bodyweight and control$Bodyweight
t = 2.0552, df = 20.236, p-value = 0.053
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.04296563  6.08463229
sample estimates:
mean of x mean of y 
 26.83417  23.81333 

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html


If we add more data supportive of alt. hypothesis, the 
t-statistic and degrees of freedom lead to p-value < 0.05

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.github.io/book/pages/t-tests_in_practice.html

# add two new data points that support alt. Hypothesis
highfat = rbind(highfat, list("hf", as.numeric(30.22)))
control = rbind(control, list("chow", as.numeric(24.23)))

# compute the two sample t-test
t.test(highfat$Bodyweight, control$Bodyweight)

Welch Two Sample t-test

data:  highfat$Bodyweight and control$Bodyweight
t = 2.3591, df = 21.774, p-value = 0.02771
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.3911423 6.1073193
sample estimates:
mean of x mean of y 
 27.09462  23.84538 
 

http://genomicsclass.github.io/book/pages/clt_and_t-distribution.html
http://genomicsclass.github.io/book/pages/t-tests_in_practice.html


Analysis of Variance 
(ANOVA) is essentially 
the t-test for more than 

two groups.


