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In biology, we often use samples to
estimate the behavior of the full
population (of molecules, cells,
individuals). Sampling introduces
uncertainty.



Comparing observations

Two sample t-test
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Recall: Central Limit Theorem holds true for any distribution
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As the sample size increases, the means of samples will become
increasingly close to a normal distribution with a mean (u) equal to
the population sample!

https://www.nature.com/articles/nmeth.2613/figures/2
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With larger sample sizes (n), the standard deviation of the

Sample means decreases Standard deviation of the
sample means.
Population distribution
Normal Skewed Uniform Irregular \

AL_M X =0/Vn

Samphng distribution of sample mean

Standard deviation of the
population

As n increases, oX decreases.
That is, the samples will have
more similar means. Most

importantly, when using a larger
1 n, your sample mean is much

: more likely to be close to the
Shown are sampling distributions of sample means for 10,000 samples for indicated sample sizes drawn from four different true population mean. This is
distributions. Mean and s.d. are indicated as in Figure 1. importa ntin biology because

we typically do one sample of
size n (i.e., n replicates).

https://www.nature.com/articles/nmeth.2613/fiqures/3
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Samples better approximate population as n increases.
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The measured spread of sample
means is also known as the standard
error of the mean (s.e.m., SEX, s/) and

6+ . A sample size of 30 is often is used to estimate oX, which we
I recommended. cannot know because we cannot
4 | collect all possible samples.

| Standard error of the mean (s.e.m.)
The s.e.m. (s/y/n) measures how well

the sample mean approximates the
3 I A population mean.
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Is our observed value significantly different than a

reference value?

Experimental
observation

Reference Observed
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8 9 10 11 12
Expression

Is this observed difference
compared to the reference value
due to random chance?

https://www.nature.com/articles/nmeth.2698/figures/1

Distribution of reference
expression values

u
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Assume that technical factors can lead
to random fluctuations that disperse
measurements forming the null
distribution, which encapsulates the
null hypothesis (H,). We assume that
the null distribution is normally
distributed.

Probability of observing
a more extreme value

u

L 1 T

10 11
Expression

12

Statistical tests locate an
observation on a null distribution to
measure the degree to which itis an
outlier. In other words, what is the
probability of sampling another
observation from the null
distribution that is as far away from
u? This probability is the P-value


https://www.nature.com/articles/nmeth.2698/figures/1

P-values from two-tailed versus one-tailed tests

Probability of observing
a more extreme value

One tailed test: what is
the probability of
measuring a value greater

Two tailed test: what is
the probability of
measuring a value at least
as far as x from u? That s, than x? That s, only the
the gray and the black . — v black area under the null
areas under the null 8 9 10 11 12 distribution

distribution Expression

https://www.nature.com/articles/nmeth.2698/figures/1
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But we need to control for the noise in our measurement!

We assume the reference value (that is, the population mean, ©=10) comes from many precise estimates

and is correct. We need to know the "noise" in our measurement of protein expression to assess whether

our observed expression value (x=12) is expected under the null. We therefore estimate the spread of our
measurement with repeated measurements.

Repeated observations Distribution of C Distribution of average
of expression expression values expression values
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Exprossi Expression Average expression
We assume that our sample standard As we learned from the Central Limit Theorem,
obs_exp = c(12.0,11.5,9.5,10.5,10.8) deviation is representative of the since the null .distri.l:)ut.ion is normal, we kpow
mean(obs_exp) . the the sampling distribution of means will
standard deviation of the null
[1] 10.86 R ) . . also be normal. Therefore, we can use the
sd(obs_exp) # s.d. d'Str'bU_t'on’ even !f our sample mean is s.e.m. to estimate the s.d. on the null
[1] ©.9607289 not. This assumption of "equal distribution of the sample means. We then
sd(obs_exp)/sqrt(length(obs_exp)) # s.e.m variances" is commonly used. locate the average expression on this revised

[1] ©.429651 null to compute a p-value.



The test statistic (t) measures "signal" versus "noise"

Distribution of average

expression values ZE [ [ O " "

u

t

8 9 10 11 12
Average expression

As we learned from the Central Limit Theorem, obs exp = C(12 .0,11.5,9.5,10.5,10. 8)
since the null distribution is normal, we know xhaE _ mean(obs_exp) # xhat

the the sampling distribution of means will

also be normal. Therefore, we can use the [1] 1e.86

s.e.m. to estimate the s.d. on the null s = sd(obs_exp) # s.d.

distribution of the sample means. We then [1] ©.9607289

locate the average expression on this revised sem = sd(obs_exp)/sqrt(length(obs_exp)) # s.e.m
null to compute a p-value. [1] ©.429651

tstat = (xhat - 10.9)/sem # u, the reference value is 10

_ . [1] 2.001624
https://www.nature.com/articles/nmeth.2613/fiqures/3
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William Gosset, a.k.a. "Student". Worked at Guinness

"In his job as Head Experimental Brewer at Guinness, the
self-trained Gosset developed new statistical methods. In his job
as Head Experimental Brewer at Guinness, the self-trained
Gosset developed new statistical methods. He published under
the pseudonym 'Student’ (to avoid difficulties with his employer,
Guinness) in his work on optimizing barley yields. Trained with
Karl Pearson. Developed most famously Student's t-distribution
(originally called Student's "z") and "Student's test of statistical
significance". https://en.wikipedia.org/wiki/William_Sealy Gosset

THE PROBABLE ERROR OF A MEAN
By STUDENT

Introduction

Any experiment may he regarded as forming an individual of a “population”
of experiments which might he performed under the same conditions. A series
of experiments is a sample drawn from this population.

Now any series of experiments is only of value in so far as it enables us to
form a judgment as to the statistical constants of the population to which the
experiments belong. In a greater number of cases the question finally turns on
the value of a mean, either directly, or as the mean difference between the two
quantities.

If the number of experiments be very large, we may have precise information
as to the value of the mean, but if our sample be small, we have two sources of

uncertainty: (1) owing to the “error of random sampling” the mean of our series

of experiments deviates more or less widely from the mean of the population,

and (2) the sample is not sufficiently large to determine what is the law of
distribution of individuals. It is usual, however, to assume a normal distribution,
because, in a very large number of cases, this gives an approximation so close
that a small sample will give no real information as to the manner in which
the population deviates from normality: since some law of distribution must
he assumed it is better to work with a curve whose area and ordinates are
tabled, and whose properties are well known. This assumption is accordingly
made in the present paper, so that its conclusions are not strictly applicable to
populations known not to be normally distributed; yet it appears probable that
the deviation from normality must be very extreme to load to serious error. We
are concerned here solely with the first of these two sources of uncertainty.



https://en.wikipedia.org/wiki/Guinness
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The shape of the sampling distribution is close to, but not
quite normal. Instead, we use the t-distribution.

t and normal distributions The t distribution has higher tails than the
normal that take into account that most
Normal - n samples will underestimate the variability

in a population. Better estimate of "noise"

The test statistic (t) is compared to this
distribution and is thus called the
t-statistic. _

L — Ho

$} — —
s/v/mn

t = (xhat - 10.0)/sem
[1] 2.001624

https://www.nature.com/articles/nmeth.2613/fiqures/3
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T-distribution parameters: mean, degrees of freedom (v)

The mean is assumed to be 0, unless otherwise
stated. Why?

Well, the test statistic, t, is itself a random variable
and it comes from the difference between the sample
mean and the population mean. The null distribution
of this random variable should be centered at O since
the sample mean should be greater than the
population mean just as frequently as it is less than
the population mean. T — Lo

NG

The second parameter is the degrees of freedom
(v), which is the number of variables that are free to
independently vary. For the t-distribution, the
degrees of freedom (v) is n-1. Why n-1? If you know
sample mean, you only need n-1 of the samples to
infer the nth sample (algebra). It has no "freedom" to
vary.

t =
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vr=1 |
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"When n is small, P values derived from the t-distribution
vary greatly as n changes."

t and normal distributions P values of t statistic

Normal ............. n

0.10

P value

0.05
0.04
0.03
0.02
0.01

https://www.nature.com/articles/nmeth.2613/fiqures/3
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The test statistic is compared to the t-distribution with the
correct n (and thus degrees of freedom (v = n-1)

P values of t statistic

LR\ :
0.10 1

P value

https://www.nature.com/articles/nmeth.2613/fiqures/3

obs exp = ¢c(12.0,11.5,9.5,10.5,10.8)
xhat = mean(obs _exp) # xhat

[1] 10.86

s = sd(obs_exp) # s.d.

[1] ©.9607289

sem = sd(obs_exp)/sqrt(length(obs_exp))
[1] ©.429651

t = (xhat - 10.0)/sem

[1] 2.001624


https://www.nature.com/articles/nmeth.2613/figures/3

Use the R function t.test() to compute a one-sample t-test!

P values of t statistic

4 \-\ \
- n
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5 — 4
3 s -
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g 5 20
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0.01 1
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2 3 4 5 6

https://www.nature.com/articles/nmeth.2613/fiqures/3

t = (xhat - 10.0)/sem
[1] 2.001624

t.test(obs_exp, mu = 10, alternative = "two.sided")
One Sample t-test

data: obs_exp
t = 2.0016, df = 4, p-value = 0.1159
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:
9.667098 12.052902
sample estimates:
mean of X

10.86


https://www.nature.com/articles/nmeth.2613/figures/3

In biology, we often want to compare the means of two
different samples.
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One-sample versus two-sample t-test

Distribution of average Sample vs. sample

expression values | Y X
u

X

8 9 10 11 12

8 9 10 11 12 Var(Y)/m Var(X)/n
Average expression 0.14 0.14
One sample t-test: Compare observed Two sample t-test: Compare two
sample mean to reference value while observed samples means while
accounting for uncertainty in the sample accounting for the combined uncertainty
mean. in the sample means.

https://www.nature.com/articles/nmeth.2613/fiqures/3
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Two-sample t-test

Sample vs. sample

Y X

8 9 10 11 12

: 8 9 10 11 12
Variance V§r7(\1’) \gar7()2() Var(Y)/m Var(X)in Var(X)/r(7) +2 g/ar(Y)/m
0.14 0.14
Start with the variance of Compute the mean of each The test statistic (t) now
the two conditions, X condition and adjust the reflects the difference of
(untreated) and Y (treated) variance by the sample size  the means (approximately
to assess how uncertain 1) with respect to the
the variance for each "pooled variance" of the

condition is. two conditions



Let's work through an example. Compare mouse fed
different diets. Modified from Love and Irizarry.

# read in weight data from mice fed two different diets.

dat =
read.csv("https://raw.githubusercontent.com/genomicsclass/da
gdata/master/inst/extdata/femaleMiceWeights.csv")

# peek
head(dat, n=3)
Diet Bodyweight

1 chow 21.51
2 chow 28.14
3 chow 24.04

http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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Plot the female mice fed different diets.

# read in weight data from mice fed two different diets.

dat =

read.csv("https://raw.githubusercontent.com/genomicsclass/da .
gdata/master/inst/extdata/femaleMiceWeights.csv")

# peek .
head(dat, n=3) £

Diet Bodyweight =
1 chow 21.51
2 chow 28.14
3 chow 24.04

Bodyweight

# bring in useful libraries o .
library(dplyr)
library(ggplot2) —t

# box plot the weights of the control and 5

# high fat female mice G

dat %>% ggplot(aes(x=Diet, y=Bodyweight)) + 20~ =
geom_boxplot() + U o
geom_jitter(shape=16, position=position_jitter(0.2)) Diet

http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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Welch's two-sample t-test (unequal variances)

The test statistic (t) for one sample is
a measure of signal versus noise

| _ " "
A ,_ T Ho
. — / "Noise"
5 ’ ) . Reminder: S \/ﬁ (S e.m )
% s . standard T
5 deviation is Same goes for the two-sample test,
the square but we must account for "pooled"
root of the .
variance S€.
. ~N ~N " "
’ Diet 4 t Xl _ Xz
s 2  "Noise"

M T m pooled

http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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Welch's two-sample t-test (unequal variances)

.
.
.
30~
.

Xl . Xz " "
g ‘ ¢ - " Fpp. |
X s s Noise
— i _+_ o
: ‘ : Ny N, pooled

20~

chow nf
Diet

# subset the two groups
control = dat %>% filter(Diet=="chow")
highfat = dat %>% filter(Diet=="hf")

http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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Welch's two-sample t-test (unequal variances)

I X, - X, " "

' I 52 2 "Noise"
‘ N ' N pooled

20~

Bodyweight

chow hf
Diet

# subset the two groups

control = dat %>% filter(Diet=="chow")

highfat = dat %>% filter(Diet=="hf")

# compute the difference of means. The numerator of t

diff_of _means = mean(highfat$Bodyweight) - mean(control$Bodyweight)

# [1] 2.375517

# theory tells us that the variance of the difference of two random variables is the

sum of its variances, so we compute the variance and take the square root

pooled_se noise <- sqrt(var(highfat$Bodyweight)/nrow(highfat) +
var(control$Bodyweight)/nrow(control))

http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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Welch's two-sample t-test (unequal variances)

I X, - X, " "

' I 52 2 "Noise"
‘ N ' N pooled

20~

Bodyweight

chow hf
Diet

# subset the two groups

control = dat %>% filter(Diet=="chow")

highfat = dat %>% filter(Diet=="hf")

# compute the difference of means. The numerator of t

diff_of _means = mean(highfat$Bodyweight) - mean(control$Bodyweight)

# [1] 2.375517

# theory tells us that the variance of the difference of two random variables is the

sum of its variances, so we compute the variance and take the square root

pooled_se noise <- sqrt(var(highfat$Bodyweight)/nrow(highfat) +
var(control$Bodyweight)/nrow(control))

# compute tstat

tstat = diff_of_means / pooled_se_noise

http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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Welch's two-sample t-test (unequal variances)

P values of t statistic

s0- = { n
g . 0.10 -3
- _ =
. . _ -5
P 10

1

Bodyweight

25 g —.
g : 20
a 0.05 -
AT ) 0.04 4
20- Joe 0.53
chow h 0.02
ot 0.01
# subset the two groups 0 ey g
control = dat %>% filter(Diet=="chow") 2 3 4 5
highfat = dat %>% filter(Diet=="hf") t

# compute the difference of means. The numerator of t
diff_of _means = mean(highfat$Bodyweight) --mean(control$Bodyweight)
# [1] 2.375517
# theory tells us that the variance”of the difference of two random variables is the
sum of its variances, so we complUte the variance and take the square root
pooled_se noise <- sqrt(varfnighfat$Bodyweight)/nrow(highfat) +
var(conitrol$Bodyweight)/nrow(control))
# compute tstat
tstat = diff_of_means / pooled_se_noise
#[1]
http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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Welch's two-sample t-test (unequal variances)

: S% 8% 1] ] n
i MM

chow e
Diet

o
|
2

Bodyweight

~

# compute the two sample t-test

t.test(highfat$Bodyweight, control$Bodyweight) Here, the degrees of

Welch Two Sample t-test freedom is close to but
data: highfat$Bodyweight and odyweight not quite N-1 + M-1.
t = 2.0552, df = 20.236, p-value = 0.053 Instead it is a more

alternative hypothesis: true difference in means is not equal to © complicated "pooled"

95 percent confidence interval: q ff q
-0.04296563 6.08463229 egrees of freedom.

sample estimates: Read this for more info.
mean of x mean of y
26.83417 23.81333

http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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W hat could be done to increase confidence in rejecting the
null hypothesis?

P values of t statistic

| _. :
0.10 -0
| 3 ——e
: ~5
g ] 10
o C 20
J a. 0.05 4
" | 0.04-
o et ' £:03
# compute the two sample t-test 0.02
t.test(highfat$Bodyweight, control$Bodyweight) 0.01
0 v T T == T T T 1
Welch Two Sample t-test 2 3 4 5 6

data: highfat$Bodyweight and control$Bodyweight t
t = 2.0552, df = 20.236, p-value = 0.053
alternative hypothesis: true difference in means is not equal to ©
95 percent confidence interval:
-0.04296563 6.08463229
sample estimates:
mean of x mean of y
26.83417 23.81333

http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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If we add more data supportive of alt. hypothesis, the
t-statistic and degrees of freedom lead to p-value < 0.05

P values of t statistic

# add two new data points that support alt. Hypothesis =
highfat = rbind(highfat, list("hf", as.numeric(30.22))) 0.10 -
control = rbind(control, list("chow", as.numeric(24.23))) d

# compute the two sample t-test () ]

t.test(highfat$Bodyweight, control$Bodyweight) '% 7]

> ]

a 0.05 1

Welch Two Sample t-test 0.04 -

, , , 0.03 1

data: highfat$Bodyweight and control$Bodyweight 0.02 -

t = 2.3591, df = 21.774, p-value = 0.02771 0.01 1
alternative hypothesis: true difference in means is not equal to @ |

95 percent confidence interval:
0.3911423 6.1073193

sample estimates:

mean of x mean of y
27.09462 23.84538

http://genomicsclass.qgithub.io/book/pages/clt_and_t-distribution.html, http://genomicsclass.qithub.io/book/pages/t-tests _in_practice.html
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Analysis of Variance
(ANOVA) is essentially
the t-test for more than
two groups.



